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1. METHODS OF PROOF 

Consider the statement 

If someone lives in Greece then he lives in Europe 

The converse of this statement is 

If someone lives in Europe then he lives in Greece. 

The contrapositive of this statement is 

If someone does not live in Europe then he does not live in Greece 

We will use this example to demonstrate two kinds of proof. 

• Proof by a counterexample 

A counterexample is enough to establish that a statement is not 
true in general. For example, let us prove that the converse of the 
statement above is not true:  

If someone lives in Europe, he does not necessarily live in Greece. 

Proof: Select a resident of France. He lives in Europe but he does 
not live in Greece! 

• Proof by contradiction 

The contrapositive of the original statement is true: 

If someone does not live in Europe then he does not live in Greece 

Proof. Suppose that a person A does not live in Europe.  

If A lives in Greece then by the original statement A lives in Europe. 
Contradiction.  

The principle of contradiction is based on the following fact: 
If A then B 

is equivalent to the contrapositive statement  

If not B then not A 

Indeed: if not B then not A because if A then B, contradiction! 
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Let us see two more mathematical examples

 
EXAMPLE 

Let a be an integer. Prove the following statements: 

(a) If a2 is even then a is even. 

Proof by contradiction: 

Let a2 be even. If a is odd, then a=2n+1 for some integer n. But  

a2=(2n+1)2=4n2+4n+1=2(2n2+2n)+1  

which is odd. Contradiction. 

(b) If a2 is a multiple of n, then a is not necessarily a multiple of n. 

Proof by a counterexample: 

For a=6 and n=4, 

62 is a multiple of 4 but 6 is not a multiple of 4 

 
NOTICE. 

We very often do not refer at all to the term “contradiction”; we 
simply prove the contrapositive statement. 

A classical mathematical example is the definition of a 1-1 
function: different elements map to different images, that is 

x1 ≠ x2 ⇒ f(x1) ≠ f(x2) 

It is much more practical to use the equivalent statement  

f(x1) = f(x2)  ⇒ x1 = x2 

This is in fact the contrapositive statement of the definition 

 

A classical example of contradiction is the pigeonhole principle 
presented below. 
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• The pigeonhole principle 

Suppose that n+1 pigeons are placed in n pigeonholes 

Then, there exists a pigeonhole with at least 2 pigeons 

Indeed, is all pigeonholes had at most 1 pigeon we would have at 
most n pigeons, contradiction. 

 
EXAMPLE 

There are 400 people in a club. At least two of them have their 
birthday on the same day.  

Indeed, if all of them had their birthday on different days we 
would have at most 366 people, contradiction. 

 

A more general form says 

Suppose that kn+1 pigeons are placed in n pigeonholes 

Then, there exists a pigeonhole with at least k+1 pigeons 

Indeed, is all pigeonholes had at most k pigeons we would have at 
most nk pigeons, contradiction. 

 
EXAMPLE 

For example, suppose that 64 pigeons are placed in 7 pigeonholes. 
Show that some pigeonhole contains at least 10 pigeons.  

If, otherwise, all pigeonholes had at most 9 pigeons, we would have 
at most 7x9=63 pigeons, contradiction. 

 
 

Finally, let us remember the principle of mathematical induction. 
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• Strong mathematical induction 

Remember the principle of mathematical induction for a statement 
P(n) which depends on the positive integer n. The steps are as 
follows 

o For n=1 the statement is true; 

o Assume that the statement is true for n=k; 

o Prove that the statement is true for n=k+1; 

Then the statement is true for any positive integer n. 

But sometimes the inductive step is not based on the preceding 
integer but on all the preceding integers! 

o For n=1 the statement is true; 

o Assume that the statement is true for any n<k; 

o Prove that the statement is true for n=k; 

Then the statement is true for any positive integer n. 

Although prime numbers will be formally introduced later on we 
will use a classical example which refers to prime numbers 
 

 

Proof by strong induction. 
• For n=2 the statement is true since 2 is a prime. 

• Assume that the statement is true for any n<k 

• We will prove that it is true for n=k. 

Indeed, if k is a prime we are done. If not then k=ab 
But a<k hence it has a prime divisor p by assumption. 
Thus p divides k as well, i.e. p is a prime divisor of k  

By strong induction the proposition is true for any n≥2. 

 
 

Any integer n≥2 is either a prime or it has a prime divisor.  
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2. DIVISIBILITY 

For two integers a and b, we say that a divides b, if 

kab =  for some Zk∈  

We use the notation b|a . Thus 

 

 

For example, 3 divides 15: 

3|15   since  15=3×5 

3†13 

We also say that  

 a is a divisor of b   e.g.  3 is a divisor of 15  

 a is a factor of b   e.g.  3 is a factor of 15 

 b is a multiple of a   e.g.  15 is a multiple of 3 

Remark: Particularly for 0 and a non-zero integer a 

 0|0  (since 0 is a multiple of 0) 

a|0   (0 is a multiple of any integer, since 0=0a) 

0†a  (in other words, 0 divides only 0) 

• Basic Properties 

 

 

 

 

 

 

1. a|a   for any a∈Z (reflexive) 

2. a|b and b|c ⇒ a|c  (transitive) 

3. ± 1| a  for any a∈Z 

4. a |± 1  ⇒ a=± 1 

5. a|b and b|a ⇒ a=± b 

b|a     if and only if     kab =  for some Zk∈  
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Notice. We very often consider only positive integers. Then, the last 
three properties become 

• 1| a  for any a∈Z+ 

• a |1  ⇒ a=1 

• a|b and b|a ⇒ a=b 

The proofs of these properties are all similar. Let’s see a proof. 

 
Proof of property 2: a|b and b|c ⇒ a|c   

   a|b and b|c ⇒ b=ka and c=k΄b   for some k, k΄∈Z   [by definition] 

⇒ c=k΄ka 

⇒ a|c       [by definition] 

 

Moreover, for any integers  

 

 

 

 

 

 

 

 
Proof of property 7: na|nb and n≠0 ⇒ a|b      

   na|nb and n≠0 ⇒ nb=kna   for some k∈Z   [by definition] 

⇒ b=ka            [since n≠0] 

⇒ a|b          [by definition] 

 

6. a|b ⇒ na|nb 

7. na|nb and n≠0 ⇒ a|b     (cancellation)  

8. a1|b1 and a2|b2 ⇒ a1a2|b1b2  

         a| b1+b2 

9. a|b1 and a|b2  ⇒   a| b1-b2 

     a|mb1+nb2  (any linear combination) 
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• Division of integers 

When we divide 41 by 5 (41÷5), the quotient is 8 and the 
remainder 1. More formally 

18541 +×=   

We also know that the remainder 1 satisfies 510 <≤ . Thus 

 

 

 

 

Mind the case where a is negative: 
o When we divide 41 by 5 the remainder is 1 (see above). 
o When we divide -41 by 5 the remainder is 4, since  

49)541- +−×= (  

Finally, if r = 0 then b divides a since bqa = . For example, 40÷5 
gives 8540 ×=  and the remainder is 0. 

 
NOTICE. 

In fact, we can divide by negative integer b as well. But then 

 

To summarize 
o When we divide 41 by 5 or -5 the remainder is 1 
o When we divide -41 by 5 or -5 the remainder is 4 

Indeed, 
41  ÷  5 18541 +×=  
41 ÷ (-5) 18)5)41 +−×−= ((  
(-41)  ÷ 5 49)541- +−×= (  

(-41) ÷ (-5) 49541- +×−=  

 

|b| r0 <≤  

Given two integers a and b>0, there exist q, r ϵZ such that 

rbqa +=   with  b r0 <≤  

We say that q is the quotient and r is the remainder. 
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• GCD and LCM 

The greatest common divisor (gcd) of two integers is just the 
greatest common divisor! ☺.  

But bear in mind that it is always a non-negative number.  

For example,  

The gcd of 6 and 15 is 3.     The gcd of 6 and -15 is still 3. 

We write 
gcd(6,15)=3      and      gcd(6,-15)=3       

But what is the formal definition of the gcd? 

 

 

 

 
 

 
Indeed, gcd(6,15)=3 since 

(i) 3|6 and 3|15    

(ii) if d΄|6 and d΄|15, then d΄|3  [as d΄ can be either 1 or 3] 

It also holds 

gcd(0,a) = |a|  and  gcd(0,0) = 0 

Proposition 

For any a,b∈Z it holds 

(i) gcd(a,b)=gcd(a+b,b)  

(ii) gcd(a,b)=gcd(a-b,b) 

(iii) gcd(a,b)=gcd(a+kb,b) 

We only prove property (iii) which is the most general result! 

Let a,b∈Z. Then  
gcd(a,b)=d    (d≥0) 

if    
(i)   d|a and d|b       [I.e. d is a common divisor] 

(ii)   If d΄|a and d΄|b, then d΄|d     [I.e. it is the greatest!] 

 



TOPIC 1: ALGEBRA  Christos Nikolaidis 

 9

Proof of (iii) 

Let d1=gcd(a,b) and d2=gcd(a+kb,b) 

    d1|a and d1|b     [property of d1] 

⇒ d1|a+kb and d1|b   [property of divisibility] 

⇒ d1≤d2     [since d2=gcd(a+kb,b)] 

On the other hand 

    d2| a+kb and d2|a    [property of d1] 

⇒ d2|a+kb-kb and d2|b   [property of divisibility] 
⇒ d2|a and d2|b  
⇒ d2≤d1     [since d1=gcd(a,b)] 

Therefore, d1=d2  

 
Similarly, the least common multiple (lcm) of two integers is just 
the least common non-negative multiple! ☺.  

For example,  

The lcm of 6 and 9 is 18. 
We write 

lcm(6,9)=18 

But what is the formal definition of the lcm? 

 

 

 

 
 
 
Indeed, lcm(6,9)=18 since 

(i) 6|18 and 9|18    

(ii) if 6|l΄ and 9|l΄, then 18|l΄  [as l΄ can be 18,36,54,72,…] 

Let a,b∈Z. Then  

lcm(a,b)= l         (l ≥0) 
if 

(i)   a|l and b|l    [I.e. l is a common multiple] 

(ii)   if a|l΄ and b|l΄, then lIl΄  [I.e. it is the least] 
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• Euclidean Algorithm 

Our target here is to find gcd(a,b). If 
rbqa +=  

then according to a proposition above 

gcd(a,b)=gcd(a-bq,b)=gcd(b,r) 

Then we divide b by r 

11 rrqb +=  
so that    gcd(b,r)= gcd(r,r1)    and so on! 

Thus, we can find the gcd of two integers by repeated divisions.  

Let’s demonstrate the result by using an example: 

Find gcd(100,18). 

100 = 18×5 + 10 
18 = 10×1 + 8 
10 = 8×1 + 2 
8 = 2×4 + 0 

This implies that  
gcd(100,18) = 2 

Indeed, 
gcd(100,18) = gcd(18,10) = gcd(10,8) = gcd(8,2) = gcd(2,0) = 2 

This algorithm allows us also to 2= gcd(100,18) as a linear 
combination of 100 and 18: 

       2 = 10-1×8  
   = 10-1× (18-1×10) = -1×18+2×10  
   = -1×18+2×(100-5×18) = 2×100-11×18 

In general,  

 

 
For any a,b∈Z,   if gcd(a,b)=d, then  

d = sa+rb  for some r,s ∈ Z 
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We say that the integers a and b are coprime if gcd(a,b)=1. For 
example 5 and 7 are coprime, 4 and 9 are coprime. 

According to the last result, if a and b are coprime then 

sa+rb = 1  for some r,s ∈ Z 

But in this case the converse is also true, that is 

if sa+rb = 1 for some r,s ∈ Z, then gcd(a,b)=1 

Indeed, suppose that sa+rb = 1 and gcd(a,b)=d. Then 

d|a and d|b ⇒ d|sa+rb  

 ⇒ d|1  

 ⇒ d=1.  

Therefore, we obtain a very strong result 

 
 

Based on this result we can prove the following 

 

 

 

Proofs 

•   gcd(a,b)=d ⇒ sa+rb =d for some r,s ∈ Z 

⇒ s
d
a +r

d
b  =1 for some r,s ∈ Z (clearly 

d
a ,

d
b  integers) 

⇒ 
d
a  and 

d
b  are coprime. 

•  Suppose that a|bc, and a,b are coprime. Then 

sa+rb =1 for some r,s ∈ Z ⇒ sac+rbc =c  

Since a|sac and a| rbc, it holds a|c. 

 

gcd(a,b)=1  ⇔   sa+rb =1 for some r,s ∈ Z 

1. If gcd(a,b)=d  then 
d
a  and 

d
b  are coprime integers. 

2. If a|bc and a,b are coprime then a|c 
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3. PRIME NUMBERS 

In this section we only consider positive integers. 

Any number has at least two trivial divisors: 1 and itself. Some 
positive integers have only those two divisors. They are called 
prime. We consider that the smallest prime number is 2. This is in 
fact the only even prime number (why?) 

A more formal definition says that an integer p≥2 is prime if 
 

 

The first prime numbers are 
2, 3, 5, 7, 11, 13, 17, 23, … 

They form a sequence  
 

 

For example, p1=2, p5=11 etc. 

Non-prime integers n≥2 are also called composite. 1 is neither 
prime nor composite. But how many prime numbers are there? 

 

 
Proof.     

Suppose that there are only n prime numbers, p1, p2, … , pn. 

Consider the integer 

S= p1p2…pn+1 
S has a prime divisor. Suppose it is pi, where 1≤i≤n. Then 

pi|S and pi|p1p2…pn  ⇒  pi|(S-p1p2…pn)   
⇒  pi|1 

Contradiction. 

 

p=ab ⇒ a=1 or b=1  

pn = the n-th prime  

There are infinitely many prime numbers  
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An interesting question is 

 

The answer is YES. The numbers  

101!+2,  101!+3, 101!+4, …, 101!+101, 

are 100 consecutive integers. The first one is divisible by 2, the 
second one by 3,…, the last one by 101. So, none of them is prime. 

In general, the n consecutive integers  

(n+1)!+2,  (n+1)!+3, 101!+4, …, (n+1)!+(n+1) 

are composite numbers (why?) 

 
• Fundamental Theorem of Arithmetic 

We have already seen that 

 

 

The proof has been done by using strong mathematical induction. 

 
For example 60 is divisible by 2, but also by 3 etc. In fact we can 
express 60 as a product of primes: 

60=2×2×3×5 

We say that this is a prime decomposition of 60. 

A stronger version of the last proposition says that any integer has 
a unique prime decomposition. This is the so-called fundamental 
theorem of Arithmetic. We split the proposition in two parts: 
Existence and Uniqueness.  

 

 

Any integer n≥2 has a prime divisor.  

Any integer n≥2 has a prime decomposition  

Can we find 100 consecutive integers which are no prime? 
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Proof by strong induction. 
• For n=2 it is true since 2 is already a prime. 
• Assume that the statement is true for any n<k 
• We will prove that it is true for n=k. 

Indeed, if k is a prime we are done. If not then k=ab 
But a<k and b<k, hence both a and b have prime 
decompositions. Thus k=ab also has a prime decomposition. 

By strong induction the proposition is true for any n≥2. 

 
But is it possible to express an integer into two different prime 
decompositions? The answer is NO. 
 

 
Proof by strong induction. 

• For n=2 it is true since 2 is the only prime decomposition for 2. 
• Assume that the statement is true for any n<k 
• We will prove that it is true for n=k. 

Indeed, if k is prime we are done. If not, suppose that  

        k=p1p2…ps=q1q2…qt      (where all pi and qi are prime) 

Since p1 divides the first product it also divides the second 
product. So it divides one of the primes qi so it is one of them. 
Suppose (wlog) that p1=q1. Then 

p2…ps=q2…qt 
But this number is less that k so it has a unique decomposition. 
Therefore, s=t and 

p2=q2 p3=q3    …  ps=qs 
Thus the decomposition of k is unique. 

By strong induction the proposition is true for any n≥2. 

 

Any integer n has a unique prime decomposition  



TOPIC 1: ALGEBRA  Christos Nikolaidis 

 15 

We agree that 1 has also a prime decomposition. It is a product of 
zero primes! Thus any positive integer has a prime decomposition. 

 
NOTICE 

There are three versions for the expression of the prime 
decomposition of a natural number n. 

� s321 ppppn L= ,   where pi primes with p1≤p2≤…≤ps 

� 
s321 n

s
n

3
n

2
n

1 ppppn L= , where pi primes with p1<p2<…<ps 

� L
321 n

3
n

2
n

1 pppn = ,   where pn is the sequence of all primes  
and only a finite number of exponents 
are non-zero 

For example, the corresponding expressions for the natural number 
n=1400 are as follows 

� 1400=2⋅2⋅2⋅5⋅5⋅7 

� 7521400 23
⋅⋅= , 

� L
001203 131175321400 = ,  

 
The   prime decomposition also helps us to find the gcd and the 
lcm of two integers.  

For example, since 
7521400 23
⋅⋅= , 

24 1152151250 ⋅⋅= , 
we obtain  

gcd(1400,151250) = 5052 2
=⋅  

lcm(1400,151250) = 243 11752 ⋅⋅⋅ = 4235000 

Clearly,  

 the decomposition contains 
gcd only the common prime factors to the lowest power 
lcm all the prime factors to the greatest power. 
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This observation provides an easy proof for the following result 

gcd(n,m) × lcm(n,m) = nm 

Indeed, if 

L
321 n

3
n

2
n

1 pppn =  

L
321 m

3
m

2
m

1 pppm =  

(where pn is the sequence of all primes), then  

gcd(n,m) × lcm(n,m) =  

=( L
)m,min(n

2
)m,min(n

1
2211 pp )( L

)m,min(n
2

)m,min(n
1

2211 pp ) 

= L
),mmax(n),mmin(n

2
),mmax(n),mmin(n

1
22221111 pp ++  

= L
2211 mn

2
mn

1 pp ++  

= ( L
21 n

2
n

1 pp )( L
21 m

2
m

1 pp ) 

= nm 

Let’s confirm the result be using the example above: 

1400 × 151250  = 211750000 

gcd × lcm = 50 × 4235000 = 211750000 
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4. LINEAR DIOPHANTINE EQUATIONS: ax+by=c 

Equations where the solutions we are looking for are only integers 
are called Diophantine. 

Here we study linear Diophantine equations of the form 
ax+by=c 

where the unknowns x,y∈Z. 

Sometimes it is easy to see that there is no solution. For example 

2x+6y=17 

has no solution since the LHS is always even while the RHS is odd.  

Consider now 
2x+7y=9 

Obviously (1,1) is a solution. But it is not the only one!  
(1+7t,1-2t) 

where t∈Z, are also solutions. Indeed 
2(1+7t)+7(1-2t) = 2+14t+7-14t = 9 

Thus (8,-1), (15,-3), (-6,3) are some of the many solutions. 

In general, the following result holds. 
 
 
 
 
 
 
 
 
 
 
 
 

Consider the linear Diophantine equation  
ax+by=c 

with  d=gcd(a,b). 

• The equation has a solution if and only if  d|c. 
• Let )y,(x 00  be a particular solution.  

(a)  If d=1 the general solution is  
y)(x, = at)ybt,(x 00 −+ , t∈Z. 

(b)  If d≠1 we divide the equation by d and reduce it  

 to case (a) [thus y)(x, = t)
d
ayt,

d
b(x 00 −+ , t∈Z] 
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Proof. 

Consider the equation  
ax+by=c 

If d does not divide c then it divides the LHS but not the RHS, 
contradiction.  
If d divides c then 

d=ra+sb for some r,s∈Z ⇒ 1
d
sb

d
ra

=+  

⇒ c
d

sbc
d

rac
=+  

⇒ c
d
cb(s

d
ca(r =+ ))  

Since 
d
c
∈Z the equation has a solution )y,(x 00 =(r

d
c , s

d
c ). 

 
Let  (x,y) be another solution. Then  

ax+by=c 
a 0x +b 0y =c 

Thus  
  ax+by=a 0x +b 0y  ⇒ a(x- 0x )=-b(y- 0y ) 

⇒ 
0

0

xx
yy

b
a-

−

−
=  

If d=1, that is a and b are coprime, then  
y-y0 =-at 
x-x0 = bt   for some t∈Z 

Therefore  
y)(x, = at)ybt,(x 00 −+ , t∈Z. 

If d≠1 then  

d
cy

d
bx

d
a

=+  

But now )
d
b,

d
agcd( =1 and the general solution takes the form 

y)(x, = t)
d
ayt,

d
b(x 00 −+ , t∈Z. 
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EXAMPLE 
Solve the Diophantine equations 

(a) 6x+14y=21    (b)  6x+13y=21    (c)  6x+15y=21 
Solutions 

(a)  gcd(6,14)=2. Since 2 does not divide 21, there is no solution. 
(b)  gcd(6,13)=1. Since 1|21, there is a solution. 
     The Euclidean algorithm gives  
  13=2×6+1 
    Hence 1=13-6×2, that is 6×(-2)+13×1=1 
   Multiply by 21:     6×(-42)+13×21=21 
 A particular solution is   (-42,21) 

The general solution is   (-42+13t,21-6t) 
(c) gcd(6,15)=3. Since 3|21, there is a solution. 
 Method A: Direct 
     The Euclidean algorithm gives  
  15=2×6+3 
  6 = 2×3+0  (thus gcd=3) 

Hence 3=15-6×2, that is 6×(-2)+15×1=3 
   Multiply by 7:     6×(-14)+13×7=21 
 A particular solution is   (-14,7) 

The general solution is   (-14+5t,7-2t) 
 Method B: divide the equation by 3; it reduces to case gcd=1 

2x+5y=7 
Now gcd(2,5)=1. 

     The Euclidean algorithm gives  
5 = 2×2+1 

Hence 1=5-2×2, that is 2×(-2)+5×1=1 
   Multiply by 7:     2×(-14)+5×7=7 
 A particular solution is   (-14,7) 

The general solution is   (-14+5t,7-2t) 
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5. CONGRUENCES 

For any n∈Z+, we define the equivalence relation in Z 
 
 
 
 

We say that a and b are congruent modulo n (and the equivalence 
relation is called congruence).  

For example 
27≡12(mod5) 

There are 5 equivalence classes modulo 5, 

0(mod5)   it is the set {5k|k∈Z} 
1(mod5)   it is the set {5k+1|k∈Z} 
2(mod5)  it is the set {5k+2|k∈Z} 
3(mod5)   it is the set {5k+3|k∈Z} 
4(mod5)   it is the set {5k+4|k∈Z} 

In general, there are n equivalence classes modulo n 
0(modn) 
1(modn) 
2(modn) 

… 
(n-1)(modn) 

They are also known as residue classes modulo n. 

The question “find 27(mod5)” means find the corresponding 
residue class. Thus  

27≡2(mod5) 

As the congruence modulo n reduces to divisibility, some first 
results are trivial 

a≡b(modn) ⇔ n| a-b 
or equivalently 

⇔ a and b leave the same remainder when divided by n 
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• Properties of congruences 

 
 
 
 
 
 
 

Proofs. 

a≡b(modn) ⇒ n| a-b 
c≡d(modn) ⇒ n| c-d 

1st property: just notice that  
n| (a-b) + (c-d) = (a+c)-(b+d)  

⇒ a+c≡b+d(modn) 

2nd property: similarly 
3rd property: 

   n| (a-b)(c-d) = ac-bc-ad+bd  
  = ac-bc-ad+2bd-bd 
  = ac-bd-(bc-bd)-(ad-bd) 
  = ac-bd-b(c-d)-d(a-b) 

Hence   
n| ac-bd    

⇒  ac≡bd(modn) 

Based on these properties we can also prove the following 
 
 
 
 
 
 
 

Let 
a≡b(modn)    and    c≡d(modn) 

Then 
• a+c≡b+d(modn) 
• a-c≡b-d(modn) 
• ac≡bd(modn) 

Let   a≡b(modn) 
Then 

• ak≡bk(modn)     k∈Z+ 
• ma≡mb(modn)     m∈Z 
• f(a)≡f(b)(modn)     where f is a polynomial  

with integer coefficients 
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• Fermat’s Little theorem 

 
 

 

For example 
34≡1(mod5) 

512≡1(mod13) 

This theorem helps us to find the residue class of a large number. 

 
EXAMPLE 
Find 52018(mod13) 

Solution 

By Fermat’s little theorem 
 512≡1(mod13)  ⇒ 512×168≡1168(mod13) 

⇒ 52016≡1(mod13) 
⇒ 5201652≡52(mod13) 
⇒ 52018≡25(mod13) 
⇒ 52018≡12(mod13) 

 
Sometimes we cannot start by using Fermat, but we try to start 
by a similar relation of the form an ≡1(modn) or an ≡-1(modn). 

 
EXAMPLE 
Find the last digit of 32018. In other words, find 32018(mod10) 

Solution 

Method 1: We observe that 34≡1(mod10).  
Thus      34×504≡1504(mod10) 

⇒ 32016≡1(mod10) 
⇒ 3201632≡32(mod10) 
⇒ 32018≡9(mod10) 

Thus the last digit is 9. 

For any a∈Z and prime p that does not divide a, 
ap-1≡1(modp) 



TOPIC 1: ALGEBRA  Christos Nikolaidis 

 23 

Method 2: We observe that 32≡-1(mod10). 
Thus    32×1009≡ (-1)1009(mod10) 

⇒ 32018≡-1(mod10) 
⇒ 32018≡9(mod10) 

Thus the last digit is 9. 

 
NOTICE 

• It is not always possible to start with a relation of the form  
  an≡1(modn)   or   an≡-1(modn). 

We must improvise by using similar techniques. 
• For  xn(modn) with x>n we can simplify the base x by choosing a 

congruent base y modulo n (since x≡y(modn) ⇒ xn≡yn(modn). 

 
EXAMPLE 
Find the last digit of 20182018, that is 20182018(mod10) 

Solution 

Firstly, we reduce the base 2018 to a smaller one: 

2018≡-2(mod10) ⇒ 20182018 ≡ (-2)2018(mod10) 
  ⇒ 20182018 ≡ 22018(mod10) 

Thus the problem reduces to finding 22018(mod10). 

[2n is always even, thus we can’t start by 2n≡1(mod10) for some n.     
 There are many alternative methods; I suggest one] 

We observe that 24≡1(mod5).  
Thus    24×504≡1504(mod5) ⇒ 22016≡1(mod5) 

           ⇒ 22017≡2(mod5) 
But also                  22017≡2(mod2).  
Thus           22017≡2(mod2×5) ⇒ 22017≡2(mod10)  

          ⇒ 2×22017≡2×2(mod10) 
          ⇒ 22018≡4(mod10) 

Therefore, the last digit of 20182018 is 4.  

 



TOPIC 1: ALGEBRA  Christos Nikolaidis 

 24 

• Solving linear congruences 

Consider the linear congruence equation  
3x≡4(mod5) 

Notice that if x=a satisfies the equation then the whole class 
a(mod5) 

satisfies the equation (easy to verify). 

Among the 5 classes mod5 only 3(mod5) satisfies the equation 
since 

3×3=9≡4(mod5) 
In general, 

 
 
 
 
 
 
 
 
 
 
 
 
 

  

In fact the problem of solving a linear congruent is equivalent to 
the problem of solving a Diophantine equation. Indeed,  

ax≡b(modn) ⇔ ax-b=nk  
 ⇔ ax - nk = b 

In Diophantine equations we seek pairs (x,k),  
In linear congruences we seek classes x(modn)    [ignore k] 

Thus the strategies are very similar. 

Consider the linear congruence 
ax≡b(modn) 

with  d=gcd(a,n). 

• The equation has a solution if and only if  d|b. 
(a) If d=1 there is a unique solution of the form 

0x (modn) 

(b)  If d≠1 we divide the whole equation by d and get 
a΄x≡b΄(modn΄) 

It reduces to case (a).  
Given the unique solution 0x (mod n΄),  we obtain d 
solutions modn: 

0x ,  'nx0 + ,  '2nx0 + ,  …,  '1)n-(dx0 +    all (modn)    
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We saw in a previous paragraph an example of 3 Diophantine 
equations  

(a) 6x+14y=21    (b)  6x+13y=21    (c)  6x+15y=21 

Let us see now the 3 corresponding linear congruences. 

 
EXAMPLE 
Solve the linear congruences 
     (a)  6x≡21(mod14)     

(b)  6x≡21(mod13)     
(c)  6x≡21(mod15) 

Solutions 

(a)  gcd(6,14)=2.  
Since 2 does not divide 21, there is no solution. 

(b) gcd(6,13)=1.  
Since 1|21, there is a unique solution mod13. 

     The Euclidean algorithm gives  
  13=2×6+1 
    Hence 1=13-6×2, that is 6×(-2)+13×1=1 
   Multiply by 21:     6×(-42)+13×21=21 

The solution is   -42(mod13), that is    10(mod13) 
(c) gcd(6,15)=3.  

Since 3|21, there are 3 solutions (mod15). 
 Divide the equation by 3: 

2x≡7(mod5) 
Now gcd(2,5)=1.  The Euclidean algorithm gives  

5 = 2×2+1 
Hence 1=5-2×2, that is 2×(-2)+5×1=1 

   Multiply by 7:     2×(-14)+5×7=7 
The solution is   -14(mod5), that is 1(mod5) 

The 3 solutions (mod15) are the following 
1(mod15)  6(mod15)  11(mod15) 
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• Chinese Remainder Theorem 

 

 
 
 
 
 
 
 
 

Sketch of the proof for 3 congruences 

x≡b1(modn1) 
x≡b2(modn2) 
x≡b3(modn3) 

Existence 
- we form 3 auxiliary linear congruences 

n2n3A ≡1(modn1)  
n1n3B ≡1(modn2)  
n1n2C ≡1(modn3)  

- we find the particular solutions A, B, C 
- We calculate x≡b1(n2n3A)+b2(n1n3B)+b3(n1n2C)  
The integer x satisfies the 3 congruences (easy to check). 

Uniqueness  
If another integer y also satisfies the 3 equations then 

x≡y(modn1) 
x≡y(modn2) 
x≡y(modn3) 

Thus n1,n2,n3 divide x-y and since they are pairwise coprime 
n=n1n2n3 divides x-y 

that is  
x≡y(modn) 

 

Consider the simultaneous linear congruences 

x≡b1(modn1) 
x≡b2(modn2) 

… 
x≡bk(modnk) 

If n1, n2,…, nk are pairwise coprime and n=n1n2…nk 
there is a unique solution modn. 
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EXAMPLE 
Solve the system of linear congruences 

x≡1(mod2) 
x≡2(mod3) 
x≡4(mod5) 

Solution 

Since 2,3,5 are pairwise coprime there is a unique solution mod30. 
Method 1 (it follows the rationale of the proof) 

- we form 3 auxiliary linear congruences 
3×5A ≡1(mod2)  i.e  15A ≡1(mod2) 
2×5B ≡1(mod3)  i.e  10B ≡1(mod3) 
2×3C ≡1(mod5)  i.e  6C ≡1(mod5) 

- we find the particular solutions A=1, B=1, C=1 
- We estimate x≡1(15A)+2(10B)+4(6C) = 15+20+24 = 59 
The solution is x≡59(mod30), that is x≡≡≡≡29(mod30). 

Method 2 (more practical) 

1st equation ⇒ x= 2a+1 
2nd equation ⇒ 2a+1≡2(mod3) ⇒ 2a≡1(mod3) ⇒ a≡2(mod3) 

   hence a=3b+2 ⇒ x=2(3b+2)+1 ⇒ x=6b+5 
3rd equation ⇒ 6b+5 ≡ 4(mod5) ⇒ 6b ≡-1(mod5) ⇒ b=4  

Therefore x = 29 and the solution is x ≡≡≡≡ 29(mod30). 

 
• More general form of the Chinese Remainder Theorem 

a1x≡c1(modn1) 
a2x≡c2(modn2) 
a3x≡c3(modn3) 

We solve the 3 linear congruences separately.  
Suppose they have unique solutions: x≡b1(modn1) 

x≡b2(modn2) 
x≡b3(modn3) 

Thus the problem reduces to the simple case above. 
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If for example the first congruence has 2 solutions  
x≡b1(modn1) and x≡b1΄(modn1) 

(and the other two unique) we have to solve two distinct systems 
x≡b1(modn1)  x≡b1΄(modn1) 
x≡b2(modn2)  x≡b2(modn2) 
x≡b3(modn3)  x≡b3(modn3) 

 
EXAMPLE 
Solve the system of linear congruences 

3x≡1(mod2) 
5x≡1(mod3) 
2x≡3(mod5) 

Solution 

3x≡1(mod2) has the unique solution x≡1(mod2) 
5x≡1(mod3) has the unique solution x≡2(mod3) 
2x≡3(mod5) has the unique solution x≡4(mod5) 
The three new congruences form in fact the system of the previous 
example, so the solution is x≡≡≡≡29(mod30). 

 
EXAMPLE 
Solve the system of linear congruences 

2x≡1(mod3) 
6x≡2(mod4) 

Solution 

The 1st equation has the unique solution x≡2(mod3). 
The 2nd equation has the two solutions x≡1(mod4) and x≡3(mod4). 
We obtain two systems  

x≡2(mod3)   x≡2(mod3) 
x≡1(mod4)   x≡3(mod4) 

The first system has the solution x≡≡≡≡5(mod12). 

The second system has the solution x≡≡≡≡11(mod12). 
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An interesting application of the Chinese remainder theorem is 
given below. It provides an additional tool for finding the residue 
class of a large number. 

 
EXAMPLE 
Find 72018(mod30) by using Chinese remainder theorem. 
Solution 

Since 30=2×3×5, we split the question into 3 problems:  
Problem 1: Find 72018(mod2) 

7≡1(mod2) ⇒ 72018 ≡1(mod2)  
Problem 2: Find 72018(mod3) 

7≡1(mod3) ⇒ 72018 ≡1(mod3)  
Problem 3: Find 72018(mod5) 

7≡2(mod5) ⇒ 72018 ≡22018(mod5)  
   Thus we have to find 22018(mod5)  

24≡1(mod5) ⇒ 24×504≡1504(mod5)  
  ⇒ 22016≡1(mod5) 
  ⇒ 22018≡22(mod5) 
  ⇒72018 ≡4(mod5) 

Thus x=72018 satisfies the equations  

x≡1(mod2) 
x≡1(mod3) 
x≡4(mod5) 

By using the Chinese remainder theorem, there is a unique solution 
mod30: 

1st equation ⇒ x= 2a+1 
2nd equation ⇒ 2a+1≡1(mod3) ⇒ 2a≡0(mod3) ⇒ a≡0(mod3) 

   hence a=3b ⇒ x=2(3b)+1 ⇒ x=6b+1 
3rd equation ⇒ 6b+1≡4(mod5) ⇒ 6b≡3(mod5) ⇒ b=3  
Therefore x = 19 

The solution is x≡≡≡≡19(mod30). 
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6. REPRESENTATION OF NUMBERS 

• The decimal system vs the base-b system 

The standard system of expressing numbers is the decimal system 
(or base-10 system) which uses 10 digits 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 
An integer in this system has an expression of the form 

0121nn aaaaa L
−

 

which implies 
n

n
1n

1n
2

210 10a10a10a10aa +++++
−

−
L  

Following the same rationale we can express an integer by using b 
digits in the base-b system 

n
n

1n
1n

2
210 babababaa +++++

−

−
L  

For example, in the base 5 system we use only 5 digits 
0,1,2,3,4 

The number 24103 in the base-5 system is equal to 
432 525451503 ×+×+×+×+  

that is 1778 in the decimal system.  
We write  

(24103)5 = (1778)10 

Thus, the process of translating a number to the decimal system  
(24103)5 = (?)10 

is straightforward (just performing the analysis above). 

What about the inverse process? For example 
(1778)10 = (?)5 

We divide continuously by 5: 
1778 : 5   quotient 355,  remainder = 3 
355 : 5   quotient 71,  remainder = 0 
71 : 5   quotient 14,  remainder = 1 
14 : 5   quotient 2,   remainder = 4 
2 : 5    quotient 0,   remainder = 2 

We just write the remainders in the opposite order  
(1778)10 = (24103)5 
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EXAMPLE 

Express the number (196)10 in the binary (i.e. base-2) system. 
Solution 

196 : 2   quotient 98,  remainder = 0 
98 : 2   quotient 49,  remainder = 0 
49 : 2   quotient 24,  remainder = 1 
24 : 2   quotient 12,  remainder = 0 
12 : 2   quotient 6,   remainder = 0 
6 : 2    quotient 3,   remainder = 0 
3 : 2    quotient 1,   remainder = 1 
1 : 2    quotient 0,   remainder = 1 

Thus 
(196)10 = (11000100)5 

 
In the base-16 system we use the 16 digits 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 

 
EXAMPLE 

Express (2AF3)16  
(a) In the decimal system 
(b) In the binary system 

Solution 

(a)       (2AF3)16 
32 16216A16F3 ×+×+×+=  

32 162161016153 ×+×+×+=  

1010995)(=  

(b)  Method 1: we can divide continuously 10995  (decimal) by 2. 
 We will find (10101011110011)2 
     Method 2: (applies in the base-4, base-8, base-16 systems) 
 We translate each base-16 digit in binary form of length 4 

    2 → 0010    A → 1010     F → 1111      3 → 0011   

 Thus the binary form is (   10 1010 1111 0011)2 
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• Divisibility tests (in the decimal system) 

Consider the integer a in the decimal system 

10011nn )aaa(aa L
−

=  

          01
1n

1n
n

n a10a10a10a ++++=
−

−
L  

We can test if a is divisible by 2,3,4,5,6,7,8,9,10 or 11 as follows 
Division by 2 

 

 

Proof. 

         01
1n

1n
n

n a10a10a10aa ++++=
−

−
L   

≡ 0a000 ++++ L (mod2)  
≡ 0a (mod2)  

Therefore 
2|a ⇔ 2| 0a  

 
For example, 

37532268 is divisible by 2 since 8 (last digit) is even 
Division by 3 

•  

•  

Proof. 

We first observe that for any k∈Z+ 
1(mod3)101(mod3)10 k

≡⇒≡   
Thus, 

     01
1n

1n
n

n a10a10a10aa ++++=
−

−
L  

≡ 011nn aaaa ++++
−

L (mod3)  
Therefore 

3|a ⇔ 3|sum of digits 

 
For example, 

37532268 is divisible by 3  
since sum of digits = 36 which is divisible by 3 

a is divisible by 2 ⇔⇔⇔⇔ the last digit of a is even 

a is divisible by 3 ⇔⇔⇔⇔ the sum of the digits is divisible by 3 
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Division by 4 

•  

 

Proof. 

We first observe that k∈Z+  with k≥2 
0(mod4)10k

≡   (since 100, 1000 etc. are divisible by 4) 
Thus, 

     01
1n

1n
n

n a10a10a10aa ++++=
−

−
L  

≡10 01 aa + (mod4)  
≡ 1001 )a(a (mod4)  

Therefore 
4|a ⇔ 4| 1001 )a(a  

 
For example, 

37532268 is divisible by 4  
since 68 (last 2 digits) is divisible by 4 

Division by 5 

•  

 

Proof. 

          01
1n

1n
n

n a10a10a10aa ++++=
−

−
L   

≡ 0a000 ++++ L (mod5)  
≡ 0a (mod5)  

Therefore 
5|a ⇔ 5| 0a ⇔ 0a  is 0 or 5 

 
For example, 

37532268 is not divisible by 5 since the last digit is 8 
Division by 6 

•  

 
For example, 
37532268 is divisible by 6 since it is divisible by 2 and by 3 

a is divisible by 4 ⇔⇔⇔⇔ 1001 )a(a  (last 2 digits) is divisible by 4 

a is divisible by 5 ⇔⇔⇔⇔ the last digit is either 0 or 5 

a is divisible by 6 ⇔⇔⇔⇔ it is divisible by 2 and by 3 
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Division by 7 

 

Proof. 

          )a10a10a102(a2a 01
1n

1n
n

n ++++=
−

−
L  

01
1n

1n
n

n 2a10)a10a102(a ++++=
−

−
L  

01
2n

1n
1-n

n 2a)a10a1020(a ++++=
−

−
L  

01
1n

1n
1-n

n 2a)a10a10(a ++++−≡
−

−
L (mod7)  

01011nn 2a)aa(a +−≡
−
L mod7 

Therefore 
7|a  ⇔  7|2a  ⇔  7| 01011nn 2a)aa(a −

−
L  

 
For example, for 37532268 is not divisible by 7 since  

check  3753226 - 2×8 = 3753210 
check  375321 - 2×0 = 375321 
check  37532 - 2×1 = 37530 
check   3753 - 2×0 = 3753 
check   375 - 2×3 = 369 
check   36 - 2×9 = 18    which is not divisible by 7 

Division by 8 

•  

Proof. 

We first observe that for any k∈Z+ with k≥3 
0(mod8)10k

≡     (since 1000, 10000 etc. are divisible by 8) 
Thus, 

     01
1n

1n
n

n a10a10a10aa ++++=
−

−
L  

≡ 012 a10a100a ++ (mod8)  
≡ 10012 )aa(a (mod8)  

Therefore  8|a ⇔ 8| 10012 )aa(a  

 
For example, 

37532268 is not divisible by 8  
since 268 (last 3 digits) is not divisible by 8. 

a is divisible by 7 ⇔⇔⇔⇔ 01011nn 2a)aa(a −
−
L  is divisible by 7 

a is divisible by 8 ⇔⇔⇔⇔ 10012 )aa(a  (last 3 digits) is divisible by 8 
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Division by 9  

•  

 

Proof. 

We first observe that for any k∈Z+ 
1(mod9)101(mod9)10 k

≡⇔≡  
Thus, 

     01
1n

1n
n

n a10a10a10aa ++++=
−

−
L  

≡ 011nn aaaa ++++
−

L (mod9)  
Therefore 

9|a ⇔ 9|sum of digits 

 
For example, 

37532268 is divisible by 9  
since sum of digits = 36 which is divisible by 9 

Division by 10 

•  

 

Proof. 

     01
1n

1n
n

n a10a10a10aa ++++=
−

−
L  

≡ 0a000 ++++ L (mod10) 
≡ 0a (mod10) 

Therefore 
10|a ⇔ 10| 0a  

        ⇔ 0a  is 0  

 
For example, 

37532268 is not divisible by 10  
since the last digit is not 0 

 

Among the two-digit divisors the case of 11 is quite interesting. 

a is divisible by 9 ⇔⇔⇔⇔ the sum of the digits is divisible by 9 

a is divided by 10 ⇔⇔⇔⇔ the last digit is 0 
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Division by 11 

•  

 

Proof. 

We first observe that for any k∈Z+ 
1(mod11)10 −≡   1(mod11)10k

≡⇒  if k is even 
1(mod11)10k
−≡⇒   if k is odd 

Thus, 
     n

n
1n

1n10 10a10a10aaa ++++=
−

−
L  

≡ L+−+− 3210 aaaa (mod11) 
Therefore 

11|a  ⇔  11| L+−+− 3210 aaaa  

 
For example, 

37532268 is not divisible by 11  
since 8-6+2-2+3-5+7-3 = 4 is not divisible by 11 

while 
737532268 is divisible by 11  
since 8-6+2-2+3-5+7-3+7 = 11 is divisible by 11 

Division by 12 

•  

 
For example, 
37532268 is divisible by 12 since it is divisible by 3 and by 4 

 

We may obtain similar tests by combining existing cases. For 
example, 

•  

 
2  

 

and so on. 

a is divided by 11 ⇔⇔⇔⇔ a0-a1+a2-a3+… is divisible by 11 

a is divisible by 12 ⇔⇔⇔⇔ it is divisible by 3 and by 4 

a is divisible by 15 ⇔⇔⇔⇔ it is divisible by 3 and by 5 

a is divisible by 33 ⇔⇔⇔⇔ it is divisible by 3 and by 11 
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7. RECURRENCE RELATIONS 

Let us start with two familiar cases 

• Arithmetic sequences 

An arithmetic sequence of common difference d is defined by a 
recurrence relation  
   duu 1nn +=

−
,     

with    1u  given 

Then, the general term can be found directly by the formula 

1)d(nuu 1n −+=  

For example,  
if 1u  = 10   and  3uu 1nn +=

−
, 

then,  
73n1)3(n10un +=−+=  

Notice: 

The general term is always a linear expression of n: banun +=  
 
• Geometric sequences 

A geometric sequence of common ratio r is defined by a recurrence 
relation  
   1nn uru

−
= ,     

with    1u  given 

Then, the general term can be found directly by the formula 
1-n

1n ruu =  
 
For example,  

if 1u  = 12   and  1nn 3uu
−

= , 
then,  

n1-n
n 34312u ×=×=  

Notice: 

The general term is always an exponential expression of n: n
n aru =  
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• Recurrence relations of first degree 

In a recurrence relation of first degree the term nu  of a sequence is 
given in terms of 1nu

−
. Here we study the linear case of such a 

relation: 

druu 1nn +=
−

 
Notice:  

if 1r =  we obtain an arithmetic sequence:  duu 1nn +=
−

 
if 0d =  we obtain a geometric sequence:    1nn ruu

−
=  

 
For more general cases the following proposition holds: 

 
 
 
 
 

 
 
 

 
EXAMPLE 

Given that 5u1 =  and 73uu 1nn +=
−

 find a general term of nu  
Solution 

The general solution has the form 
ba3u n

n +=  
Since 5u1 = ,    5b3a =+  
We find 22u2 = , thus  22b9a =+  

The simultaneous equations give 
6
17a =  and 

2
7b −=  

Therefore, 

2
73

6
17u n

n −=  

 

Let   druu 1nn +=
−

,    ( 1r ≠ ) 
   [ 1u  is given] 

The general term has the form 
baru n

n +=  

The values of the first two terms 1u , 2u  help us to find the 
parameters a and b. 
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• Recurrence relations of second degree (homogeneous case) 

In a recurrence relation of second degree the term nu  of a sequence 
is given in terms of 1nu

−
 and 2nu

−
. There is no difference 

    if 1nu
+

 is given in terms of nu  and 1nu
−

  
or if 2nu

+
 is given in terms of 1nu

+
 and nu . 

Here we only study the so called “homogeneous case” where: 

0BuAuu n1n2n =++
++

  (A,B constants) 

Notice that, if a solution has the form n
n ru =  then it holds 

0BrArr n1n2n
=++

++  

0BArr 2
=++⇒  

The latter is known as the characteristic (or auxiliary) equation of 
the recurrence relation.  

The following proposition provides the general solution of the 
problem. 

 
 
 
 
 
 
 
 
 
 

 

Let   0BuAuu n1n2n =++
++

,     
   [ 1u , 2u  are given] 

We solve the characteristic (or auxiliary) equation 

0BArr 2
=++  

• In case of 2 distinct roots 21 rr ,  (either real or complex) 
the general solution has the form  

n
2

n
1n braru +=  

• In case of 1 double root 1r , the general solution has the 
form 

n
1

n
1n bnraru +=  

The values of the first two terms 1u , 2u  help us to find the 
parameters a and b. 
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EXAMPLE 

Solve the recurrence relation problems 
(a) 03u4uu n1n2n =+−

++
,    7u5,u 10 ==  

(b) 04u4uu n1n2n =+−
++

,    8u5,u 10 ==  
(c) 05u4uu n1n2n =+−

++
,    8u4,u 10 ==  

Solution 

(a) The characteristic equation is  

034rr 2
=+−  

The solutions are 1 and 3. Thus the general solution has the form 

nnn
n b3ab3a1u +=+=  

The first two terms give 
5ba =+      and      73ba =+  

Thus 1b 4,a ==  and the general solution is n
n 34u +=  

(b) The characteristic equation is  

044rr 2
=+−  

The solution is 2. Thus the general solution has the form 

nn
n bn2a2u +=  

The first two terms give 
5a =      and       82b2a =+  

Thus 1b 5,a −==  and the general solution is n
n n)2(5u −=  

(c) The characteristic equation is  

054rr 2
=+−  

The solutions are i2 ± . Thus the general solution has the form 

nn
n i)b(2i)a(2u −++=  

The first two terms give 
4ba =+  

8biai2b2a =−++  
Thus 2b 2,a ==  and the general solution is  nn

n i)2(2i)2(2u −++=  

 


