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MATH HL  

OPTION 

REVISION - SOLUTIONS 

SETS, RELATIONS AND GROUPS 

Instructor: Christos Nikolaidis 

 

PART B: GROUPS 

 

GROUPS 

1. (a) (a * b) * c = 






+ ba
ab  * c

c
ba

ab
ba

abc

+
+

+=
bcacab

abc
++

=  (M1)A1A1 

 a * (b * c) = a * 






+ cb
bc

cb
bca

ba

abc

+
+

+=
bcacab

abc
++

=  (M1)A1A1 

∴ (a * b) *c = a* (b * c) R1 

so * is associative. AG 7 

(b) Suppose e is an identity element, then e * a = a * e = a (M1) 

a
ae

ea =
+

 A1 

ea = ea + a M1 

ea cancels on both sides so there is no solution for e. R1 

i.e. no identity element AG 4 
[11] 

2. (a) a # b = a + b + 1 

Now b # a = b + a + 1 (M1) 

Since + is commutative a # b = b # a (A1) 

⇒ # is also a commutative operation. (AG) 

 (a # b)#c = (a + b + 1)#c 

 = a + b + 1 + c + 1 

 = a + b + c + 2 (A1) 

 a#(b # c) = a#(b + c + 1) 

 = a + b + c + 1 + 1 

 = a + b + c + 2 (A1) 

⇒ # is also associative operation. (AG) 4 

(b) To show ( , #) is a group we need to show closure, identity 

element exists, inverses exist and it is associative (already shown). 

It is closed since a + b + 1 ∈  for a, b ∈ . (A1) 

There is a unique element e(e ∈ ) such that 

p # e = e # p = p where p ∈ ⇒ p + e + 1 = e + p + 1 = p 

⇒ e = –1 as identity element (A1) 

 There are unique inverse elements for each element in  such that 

p # p
–1

 = p
–1

 # p = –1 (M1) 

⇒ p + p
–1

 + 1 = p
–1

 + p + 1 = –1 

⇒ p
–1

 = –p – 2 (A1) 

Hence ( , #) forms a group. (AG) 4 
[8] 
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3. (a) ,a b T a b∈ ⇒ ∗ ∈
 
T (A1) 

if 1, 2 1, 1 0a b ab a b ab a b∗ = − − + = ⇒ − − + =  (M1)(A1) 

( 1)( 1) 0 1, or 1a b a b⇒ − − = ⇒ = =  contradiction (M1)(R1) 

so ,a b T∗ ∈  i.e. closed (AG) 5 

 (b) 

       
 

Note: as the operation is clearly commutative, there is no need to check both left and right 

identity, or both left and right inverse below 

(c) ( 1) 2( 1) 2a e a e a a e∗ = ⇒ − = − ⇒ =  (since 1a ≠ ) (M1)(A1) 

Hence 2 is the identity element for this operation. (A1) 3 

(d) a * a’ = 2 ⇒ aa’-a-a’+2 = 2 ⇒ a’ (a -1) =a ⇒ a’ = a / (a-1) M1A1 

 Hence 3’ = 3/2 A1        3 

(e) (i) The formula is true for 1n =  since 
1( 1) 1a a= − + . (R1) 

Assume that it is true for n k= , i.e. ( 1) 1k

k times

a a a a∗ ∗ ∗ = − +
64748

L  (M1) 

( )
1

( 1) 1k

k times

a a a a a

+

∗ ∗ ∗ = − + ∗
64748

L ( ) ( )( 1) 1 ( 1) 1 2k ka a a a= − + − − + − + (M1) 

( 1) ( 1) 1 2k ka a a a a= − × + − − − − +  (A1) 

( 1) ( 1) 1ka a= − − +  (A1) 
1( 1) 1ka += − +  

so the formula is proven by mathematical induction. (R1) 6 

(ii) We require ... 2a a a∗ ∗ ∗ =  (M1) 

so that 21)1( =+− na  or 1)1( =− na  (A1) 

Apart from 2a = , the identity, the only solution is 0a = . (A1) 

Since 0 0 2∗ = , the element 0 has order 2. (A1) 4 

[26] 

4. (a) Since a∀  ∈ G, e ° a = a ° e because e is the identity element of 

the group. (R2) 

Then e ∈ H. (AG) 2 

(b) Let x, y ∈ H, then (x ° y) ° a = x ° (y ° a) (by associativity) (R1) 

 = x ° (a ° y) (since y ∈ H) (R1) 

 = (x ° a) ° y (associativity) (R1) 

 = (a ° x) ° y (x ∈ H) (R1) 

 = a ° (x ° y) (associativity) (R1) 

Therefore, (x ° y) ° a = a ° (x ° y) 

⇒ (x ° y) ∈ H.  (AG) 5 
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(c)  e ° a = a ° e identity (R1) 

⇒ (x
– 1

 ° x) ° a = a ° (x
–1

 ° x)  (R1) 

⇒ x
–1

 ° (x ° a) = (a ° x
–1

) ° x associativity 

⇒ x
–1

 ° (a ° x) = (a ° x
–1

) ° x x ∈ H (R1) 

⇒ (x
–1

 ° a) ° x = (a ° x
–1

) ° x associativity (R1) 

 Therefore, x
–1

 ° a = a ° x
–1

 cancellation law 

 and x
–1

 ∈ H   (AG) 4 
[11] 

 

FINITE GROUPS – CAYLEY TABLES 

5.  Closure - yes, because the table contains no other elements.                              (R1) 

 
[6] 

6.  (a) Note: Award (A3) if one error, (A2) if 2 errors, (A1) if 3 errors, (A0) for more 

                 4 

       

     5 

[9] 

7. (a) The operation table is thus: 

(*) 1 3 4 9 10 12 

1 1 3 4 9 10 12 

3 3 9 12 1 4 10 

4 4 12 3 10 1 9 

9 9 1 10 3 12 4 

10 10 4 1 12 9 3 

12 12 10 9 4 3 1 

  (A4) 4 

                   Note: Award (A3) if one entry is incorrect, (A2) if two entries are incorrect,  

                             (A1) if three are incorrect, (A0) if four or more are incorrect. 

(b) * is associative and commutative (known) (A1) 

The set is closed under * (A1) 

1 is the identity element (A1) 

Every element has an inverse because 1 is on each row (or column). (A1) 4 
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(c) 1 is of order 1 

12 is of order 2 (A1) 

3 and 9 are of order 3 (A1) 

4 and 10 are of order 6 (A1) 3 

 Note: If one answer is wrong, award (A1), if two or more answers are wrong award (A0). 

(d) There are four subgroups: 

{1} 

{1, 12} (A1) 

{1, 3, 9} (A2) 

{1, 3, 4, 9, 10, 12}  3 
[14] 

8. 

    3 

    5 

        4 

       2 
[14] 
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9. (a)  (3*9)*13 = 13*13 = 1 (M1) 

and 3*(9*13) = 3*5 = 1 (M1) 

 hence (3*9)*13 = 3*(9*13) (AG) 2 

 

(b) To show that (U, *) is a group we need to show that: 

(1) U is closed under *. A table is an easy way of showing closure for this finite set. 

(*) 1 3 5 9 11 13  

1 1 3 5 9 11 13  

3 3 9 1 13 5 11  

5 5 1 11 3 13 9  

9 9 13 3 11 1 5  

11 11 5 13 1 9 3  

13 13 11 9 5 3 1 (C4) 

                  

            Note: Award (C4) for a completely accurate table, (C3) for 1 or 2 errors,  

                             (C2) for 3 or 4 errors, (C1) for 5 or 6 errors, (C0) for 7 or more errors. 

 

           since for each a, b ∈ U, a* b ∈ U, closure is shown. (C1) 

(2) Since multiplication is associative, it is true in this case too. (C1) 

(3) Since 1*a = a*1 = a for all a ∈ U, 1 is the identity. (C2) 

(4) 1 appears in each row of the table once, so every element 

has a unique inverse. 

(1
–1

 = 1, 3
–1

 = 5, 5
–1

 = 3, 9
–1

 = 11, 11
–1

 = 9, 13
–1

 + 13) (C2) 11 

 

(c) (i) If G is a group and if there exists a ∈ G, such that 

G = {a
n
: n ∈ } 

Then G is a cyclic group and a is called a generator. (C2) 2 

 

(ii) By inspection: 

  3 is a generator since: 

  3
2
 = 9, 3

3
 = 13, 3

4
 = 11 (M1) 

  3
5
 = 5, 3

6
 = 1 (A1) 

 Also, 5 is a generator: 

  5
2
 = 11, 5

3
 = 13, 5

4
 = 9 (M1) 

  5
5
 = 3, 5

6
 = 1 (A1) 

 9 cannot be a generator since  9
3
 = 1 (C1) 

similarly 11
3
 = 1  and 13

2
 = 1. (C1) (C1)   7 

 

(d) Since the order of this group is 6, by Lagrange’s Theorem, the 

proper subgroups can only have orders 2 or 3. (R1) 

 Since 13 is the only self inverse 13
2
 = 1, (R1) 

the only subgroup of order 2 is {1, 13} (A1) 

No sub-group may include 3 or 5 since these are the generators of the group. 

The only elements left are 9 and 11. (R1) 

Now, 9*11 = 1, 9
2
 = 11, and 11

2
 = 9. (M2) 

Therefore, {1, 9, 11} is the other sub-group. (A1) 7 
[29] 
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PERMUTATION GROUPS 

10. (a) Since 3! = 6, order of S = 6.       (M1) (R1) 2 

(b) Members of S are p0 = 








3

3

2

2

1

1
, p1 = 









1

3

3

2

2

1
, p2 = 









2

3

1

2

3

1
, (AG) 

 p3 = 








2

3

3

2

1

1
, p4 = 









3

3

1

2

2

1
, p5 = 









1

3

2

2

3

1
 (A2) 2 

                  Note: Award (A2) for 3 correct permutations;(A1) for 2 (A0) for 1  

 p3°p4= 







=

















213

321

312

321

2

3

3

2

1

1
, p4°p3= 








=

















132

321

231

321

3

3

1

2

2

1
 (M1) 

p3 ° p4 ≠ p4 ° p3 (R1) 2 

                   Note: There are other possibilities to show that the group is not Abelian. 

(c) 







=
















=

213

321

132

321

132

3212
1p = p2 









=
















=

321

321

132

321

213

3213
1p = p0. (M1) 

(Note that p0 is the identity of the group S.) 

 Hence {p0, p1, p2} form a cyclic group of order 3 under composition. (R1) 2 

        Note: Some candidates may write {p0, p1, p2} is a subgroup of order 3,         

                 (award (A1)), and write the following table, (award (R1)): 

° p0 p1 p2 

p0 p0 p1 p2 
p1 p1 p2 p0 
p2 p2 p0 p1 

[8] 

11. (a) 








ca

dc

db

ba
 (A1) 1 

(b) 








dc

dc

ba

ba
 ; 









dc

dc

ab

ba
 (A2) 2 

                Note:   There are many correct answers for the second permutation. 

(c) 








dc

dc

ba

ba
 










ad

dc

cb

ba
 ; 









ba

dc

dc

ba
 ; 









cb

dc

ad

ba
 (A1)(A1)(A1) 

Let p, q, r, s be the four permutations in the subgroup. Closure is  

shown by the group table, i.e. (M1) 

 p q r s 

p p q r s 

q q r s p 

r r s p q 

s s p q r 

  (A1) 

Inverse: each element has an inverse, (M1) 

i.e. p
–1

 = p, q
–l

 = s, r
–1

 = r, s
–l

 = q. (A1) 7 

Note:   There are other possible answers. 

[10] 
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GROUPS AND RELATIONS (COSETS) 

12. (a) x
–1
x = e ∈ H. ⇒ x R x ⇒ R is reflexive M1 R1 

x R y ⇒ x
–1
y ∈ H ⇒ (x

–l
y)

–1
 ∈ H A1 

x
–1
y(x

–1
y)

–1
 = e so (x

–1
y)

–1
 = y

–1
x A1 

⇒ y
–1
x ∈ H ⇒ y R x ⇒ R is symmetric R1 

x R y and y R z ⇒ x
–1
y ∈ H and y

–1 
z ∈ H 

∴ (x
–1
y)(y

–1
z) ∈ H since H is closed. A1 

x
–1

(yy
–1

)z ∈ H ⇒  x
–1
z ∈ H A1 

⇒ x R z ⇒ R is transitive. R1 

∴ R is an equivalence relation. AG 8 

(b) p
3
 = q

2
 = e      qp = p

2
q 

qp
2
 = (qp)p = (p

2
q)p A1 

  = p
2
(qp)  = p

2
(p

2
q) = p

3
(pq) = pq A1A1 AG 3  

(c) H = {e, p
2
q} 

y R pq ⇒ y
–1
pq = e ⇒ pq = y A1 

or y
–l
pq = p

2
q ⇒ pq = yp

2
q 

pq
2
 = yp

2
q

2
 p = yp

2
  A1  

p
2
 = yp

3
 A1 

p
2
 = y A1 

∴ The equivalence class is { }pqp ,2  A1 5 

OTHERWISE  

The equivalence class of pq is the coset pqH which contains pq and pqp
2
q = ppqq = p

2
. 

[16] 

Extra question 

 There are 3 equivalence classes (3 cosets) 

   H={e, p
2
q},  

   pH={p, q}
  

   p
2
H ={ }pqp ,2  

 

 

ISOMORPHISMS 

 

13. (a) f is injective since f(x) = f(y) <= > 3
x
 = 3

y
 <= > x = y (M1)(R1) 

f is surjective since if z ∈ 
+
, x = log 3(z) ∈  and z = f(x) (M1)(R1) 

 For every x, y in ( , +), 

f (x + y) = 3
(x + y)

 = 3
x
3
y
 = f(x) × f(y) (M1)(A1) 6 

(b) f 
–1

(z) = log3(z) (A1) 1 

[7] 

14. (a) Since (a + 2b )(c + 2d ) = ac + 2bd + (ad + bc) 2 , 

and (ac + 2bd)
2
 – 2(ad + bc)

2
 = (a

2
 – 2b

2
)(c

2
 – 2d

2
) ≠ 0, 

S is closed under multiplication. (A2) 

1 = 1 + 20  is the neutral element. (A1) 

Finally, 
22 2

2

ba

ba

−

−
 ∈ S (M1) 

and )2(
2

2
22

ba
ba

ba
+











−

−
= 1, so every element of S has an inverse. (A1) 5 
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(b) To show that f (x) is an isomorphism, we need to show that it is 

injective, surjective and that it preserves the operation. 

Injection: Let x1 = a + 2b , x2 = c + 2d  

f (x1) = f (x2) ⇒ a – 2b  = c – 2d  ⇒ (a – c) + (d – b) 2  = 0 (M1) 

⇒ a = c, and b = d ⇒ x1 = x2 (A1) 

Surjection: For every y = a – 2b  there is x = a + 2b  (M1)(A1) 

Preserves operation: 

f(x1x2) = f((a + 2b )(c + 2d )) = f(ac + 2bd + )ad + bc) 2 ) (M1) 

= ac + 2bd – (ad + bc) 2  = (a – 2b )(c – 2d ) (M1) 

(f (a + 2b ))(f (c + 2d )) = (f (x1))(f (x2))  6 

[11] 

15. (a)  

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

  (A1) 1 

(b)  

(*) a b c d 

a b a d c 

b a b c d 

c d c a b 

d c d b a 

  (A4) 4 

Notes:  There are many other correct solutions, with a different ordering  

Award (A4) if all entries are correct,(A3) if all but 1 entry are correct,  

(A2) if all but 2 entries are correct,(A1) if all but 3 entries are correct. 
[5] 

16. (a)  

o f g h j   

f f g h j   

g g f j h   

h h j f g   

j j h g f (A3) 3 

         Note: Award (A3) for all correct, (A2) for 1 error, (A1) for 2 errors, (A0) otherwise. 

(b)  

+4 0 1 2 3  x5 1 2 3 4 

0 0 1 2 3  1 1 2 3 4 

1 1 2 3 0  2 2 4 1 3 

2 2 3 0 1  3 3 1 4 2 

3 3 0 1 2  4 4 3 2 1 

 To investigate isomorphisms we can consider the order of elements (M1) 

for +4, the identity is 0, 1 has order 4, 2 has order 2 and 3 has order 4, (A1) 

for x5, the identity is 1, 2 has order 4, 3 has order 4 and 4 has order 2, (A1) 

for °, the identity is f, and g, h and j all have order 2. (A1) 

Hence +4 is isomorphic with x5. (A1) 

Corresponding elements are 

0 ↔ 1, 1 ↔ 2, 2 ↔ 4, 3 ↔ 3, OR 0 ↔ 1, 1 ↔ 3, 2 ↔ 4, 3 ↔ 2. (A1) 6 

Note: Corresponding elements must be correct for final (A1). 

[9] 
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17. (a) By using the composition of functions we form the Cayley table 

° f1 f2 f3 f4  

f1 f1 f2 f3 f4  

f2 f2 f1 f4 f3  

f3 f3 f4 f1 f2  

f4 f4 f3 f2 f1 (A3) 

Note: For each error in the above table deduct one mark up to a 

maximum of three marks. 

 From the table, we see that (T, °) is a closed and is commutative. (R1) 

 f1 is the identity. (A1) 

 1−
if  = fi, i = 1, 2, 3, 4. (A1) 

 Since the composition of functions is an associative binary operation 

an Abelian group. (AG) 6 

(b) The Cayley table for the group (G, ◊) is given below: 

◊ 1 3 5 7  

1 1 3 5 7  

3 3 1 7 5  

5 5 7 1 3  

7 7 5 3 1 (A2) 

Note: For each error in the entries deduct one mark up to a 

maximum of two marks. 

 Define f : T aG such that f(f1) = 1, f(f2) = 3, f(f3) = 5 and f(f4) = 7 (M1) 

Since distinct elements are mapped onto distinct images, it is a bijection. (R1) 

Since the two Cayley tables match, the bijection is an isomorphism. (R1) 

Hence the two groups are isomorphic. (AG) 5 
[11] 

 

18. (a) B is the set {1, i, –1, –i} (A1) 

This set is closed under multiplication. 

Associative, since it is normal complex number multiplication. (R1) 

The identity element is 1. (R1) 

The inverse of i is –i, and vice versa, 1 and –1 are self inverses. (R1) 

(b) 

× 1 3 7 9  

1 1 3 7 9  

3 3 9 1 7  

7 7 1 9 3  

9 9 7 3 1 (A2) 

(c) Order of 1 is 1 

Order of 3 is 4, since 3
4
 = 1 (A1) 

Order of 7 is 4, since 7
4
 = 1 (A1) 

Order of 9 is 2, since 9
2
 = 1 (A1) 

(d) The two groups will have a bijection in which the following correspond: 

1 ↔ 1, 3 ↔ i, 7 ↔ i, and 9 ↔ –1 (or 3 ↔ –i, 7 ↔ i) (A1) 

Both groups have the same structure, the bijection preserves the operation. (R1) 
[11] 
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19.  

A

D

B

C

P O Q

N

M

L1

L2

 
(a) 

° U H V K   

U U H V K   

H H U K V   

V V K U H   

K K V H U (A4) 4 

Note:(A4) for 15-16 correct entries,(A3) for 13-14, (A2) for 11-12, (A1) for 9-10, (A0) o/w 

 (b) Closure: U, H, K and V are the only entries in the table. So it is closed. (A1) 

 Identity: U, since UT = TU = T for all T in S. (A1) 

 Inverses: U
–1

 = U, H
–1

 = H, V
–1

 = V, K
–1

 = K (A1) 

 Associativity: Given (AG) 

 Hence (S, °) forms a group. (R1) 4 

(c) C = {1, –1, i, –i} 

◊ 1 –1 i –i   

1 1 –1 i –i   

–1 –1 1 –i i   

i i –i –1 1   

–i –i i 1 –1 (A3) 3 

Note: Award (A3) for 15-16 correct entries, (A2) for 13-14, (A1) for 11-12, (A0) for fewer 

(d) Suppose f : S → C is an isomorphism. 

Then f(U) = 1, the identity in C, since f preserves the group operation.(M1)(C1) 

Assume f(H) = i, 1 = f(U) = f(H ° H ) = f(H) ◊ f(H). (A1) 

But f(H) = i, and i is not its own inverse, so f is not an isomorphism. (R1) 4 

Note: Accept other correctly justified solutions. 

[15] 
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THEORETICAL 

20. Let a
–1

 = b (M1) 

Then e = b × a = b × a × a (M1) 

so that e = (b × a) × a = e × a (M1) 

and therefore e = a (M1)(AG) 

Note: There are other correct solutions. 

[4] 

21. (a) If G is a group and H is a subgroup of G then the order of H is a 

divisor of the order of G. (A2) 2 

(b) Since the order of G is 24, the order of a must be 

1, 2, 3, 4, 6, 8, 12 or 24 (R2) 

The order cannot be 1, 2, 3, 6 or 12 since a
12

 ≠ e (R1) 

Also a
8
 ≠ e so that the order of a must be 24 (R1) 

Therefore, a is a generator of G, which must therefore be cyclic. (R1) 5 
[7] 

22. (a) A cyclic group is a group which is generated by one of its elements 

(or words to that effect). (M2) 2 

(b) We can assume that (G, #) has at least two elements and hence 

contains an element, say b, which is different from e, its identity. (R1) 

The order of b is equal to the order q of the subgroup it generates. (M1) 

By Lagrange’s theorem q must be a factor of p and since p is prime 

either q = 1 or q = p. (R1) 

Since b ≠ e we see that q ≠ 1 and therefore q = p. (R1) 

But if the order of b is p then b generates (G, #) 

which is therefore cyclic. (R1) 5 
[7] 

23. 

 
24. Consider a * b. This cannot be a or b since a * b = a ⇒ b = e which is not the (M1) 

case and similarly for b. So a * b = either e or c. (R1) 

If a * b = e, then a,b form an inverse pair so b * a = e. (R1) 

Suppose a * b = c. Consider b * a. As before, this cannot equal a or b and it 

cannot equal e either because that would imply that a * b = e which it is not. (R1) 

It follows that b * a = c. (R1) 

Thus in both cases, a * b = b * a. (R1) 

[6] 

25. Given (G, *) is a cyclic group with identity e and G ≠ {e} and G has no proper 

subgroups. 

If G is of composite finite order and is cyclic, then there is x ∈ G such that x 

generates G. (R1) 

If G = p × q, p, q ≠ 1, then <x
p
> is a subgroup of G of order q which is (M1) 

impossible since G has no non-trivial proper subgroup. (R1) 

Suppose the order of G is infinite. Then <x
2
> is a proper subgroup of G which (M1) 

contradicts the fact that G has no proper subgroup. (A1) 

So G is a finite cyclic group of prime order. (R1) 
[6] 
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26. If one of the sets H and K is contained in the other then either H ∪ K = H or  

H ∪ K = K. 

In either case it is a subgroup of (G, °). (C2) 

 

 Only if: 

 Conversely, suppose that (H ∪ K, °) is a subgroup of (G, °) and that H  

 is not contained in K. (M1) 

 Then there exists an element b of H which is not included in K. (C1) 

 Let a be any element of K. 

 Then ab ∈ H ∪ K (since (H ∪ K, °) is a group). (C1) 

 If ab ∈ K then b = a
–l
ab ∈ K which is a contradiction of our hypothesis. (C1) 

 Hence ab ∉ K and therefore ab ∉ H so that abb
–1

 ∈ H (C1) 

 which shows that K ⊆ H since a was any element of K. (C1) 

 Therefore H ⊆ K or K ⊆ H. (AG) 

  

 OR 

 Proof by contradiction: (M1) 

 K ⊄ H then there exists m ∈ K, m ∉ H (C1) 

 And 

 H ⊄ K then there exists n ∈ H, n ∉ K. (C1) 

 Suppose m ° n ∈ H then m ° n ° n
–1

 ∈ H is a contradiction  (C1) 

 Suppose m ° n ∉ K then n = m
–1

 ° m ° n ∈ K is a contradiction  (C1) 

 Hence m ° n ∉ H ∪ K a contradiction  (C1) 

 Therefore H ⊆ K or K ⊆ H (AG) 8 
[8] 

 

27. (a) Let (G, °) and (H, •) be two groups. They are said to be isomorphic 

if there exists a one-to-one transformation f : G → H which is 

surjective (onto) with the (C1) 

property that for all x, y ∈ G, f (x ° y) = f (x) • f (y). (C1) 2 

 

Note: Some candidates may say that the groups (G, °) and (H, •) 
are isomorphic if they have the same Cayley table (or group 

table). In that case award (C1). 

 

(b) Since f : G → H, f (x) ∈ H for some x ∈ G. 

Since e′ is the identity element in H, (M1) 

e′ • f(x) = f(x) = f(x ° e) = f(e) • f(x). (M1)(A1) 

By the right cancellation law, e′ = f(e). (R1) 4 

 

(c) Suppose G = <a>, the cyclic group generated by a, i.e. n is the 

smallest positive integer such that a
n
 = e, the identity in G. (C1) 

Let f : G → H be an isomorphism. Let f(a) = b ∈ H. 

f(a
2
) = f(a ° a) = f(a) • f(a) = (f(a))

2
. (M1) 

In general f(a
m

) = (f (a))
m

, 1 ≤ m ≤ n. (A1) 

By (iii) (b) (f(a))
n
 = e′, the identity in H. Hence b

n
 = e′ and 

consequently H is a cyclic group of order n with generator b. (R1) 4 
[10] 
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28. (a) Suppose a is of order n and is a
–1

 of order m. 

Therefore e = e*e = (a
–1

)
m

*a
n
 (M1) 

 If m > n, then e = (a
–1

)
m–n

*(a
–1

)
n
*a

n
 = (a

–1
)
m–n

*(a
–1

*a)
n
. (M1) 

Hence e = (a
–1

)
m–n

. This implies a
–1

 is of order m – n < m 

which is a contradiction. So m is not greater than n. (R1) 

 If m < n, e = (a
–1

)
m

*a
m

*a
n–m

 = (a
–1

*a)
m

*a
n–m

 (M1) 

Hence e = a
n–m

, which implies a is of order n – m < n. 

This is a contradiction. (R1) 

Therefore m = n. (AG) 5 

(b) Let S(m) be the statement: b
m

 = p
–1

*a
m

*p. 

S (1) is true since we are given b = p
–1

*a*p (A1) 

Assume S(k) as the induction hypothesis. (M1) 

b
k+1

 = b
k
*b = (p

–1
*a

k
*p)*(p

–1
*a*p) = p

–1
*a

k+1
*p (M1)(R1) 

which proves S(k + 1). 

 Hence, by mathematical induction b
n
 = p

–1
*a

n
*p (n = 1, 2, …). (AG) 4 

[9] 

29. (a) (xy)
2
 = e Order of xy = 2 (M1) 

⇒ (xy)(xy) = e ⇒ x(yx)y = e Associative property (M1)(M1) 

⇒ xx(yx)yy = xey Left and right-multiply (M1) 

⇒ e(yx)e = xy Order of elements given (M1) 

⇒ yx = xy  (AG) 

 OR 

 Since x, y and xy are self-inverses, x
–1

 = x, y
–1

 = y and (xy)
–1

 = xy (R1)(R1) 

Consider xy = (xy)
–1

 (M1) 

 = y
–1
x

–1
 (M1) 

 = yx (M1)(AG) 5 

(b) Let a be any element of a group, whose identity is e. 

Let a
–1

 be an inverse of a, and let b be another inverse of a 

different from a
–1

. 

 Now, b = be = b(aa
–1

) = (ba)a
–1

; identity and associativity properties, (M1) 

then, b = ea
–1

 = a
–1

, which contradicts the assumption that b ≠ a
–1

, (M1) 

therefore there is only one inverse of a, namely a
–1

. (R1) 

 OR 

 Let a be any element of a group whose identity is e. Let b and c be 

inverses of a, so that ab = ba = e. (M1) 

Consider b = b(ac) 

  = (ba)c 

  = c (M1) 

Thus any two inverses are equal, so the inverse is unique. (R1) 3 

(c) If G is Abelian, then f(xy) = (xy)
–1

 = y
–1
x

–1
 = x

–1
y

–1
 = f(x) f(y) and f 

is an isomorphism. (M1)(R1) 

If f is an isomorphism, then f(xy) = f(x) f(y), that is, 

(xy)
–1

 = x
–1
y

–1
 = (yx)

–1
 

Then xy = yx (M1) 

and hence G is Abelian. (R1) 4 
[12] 


