MATH HL

OPTION
REVISION - SOLUTIONS
SETS, RELATIONS AND GROUPS

Instructor: Christos Nikolaidis

PART B: GROUPS

GROUPS

1.

(a) $(a * b) * c=\left(\frac{a b}{a+b}\right) * c=\frac{\frac{a b c}{a+b}}{\frac{a b}{a+b}+c}=\frac{a b c}{a b+a c+b c}$ (M1)A1A1
$a *(b * c)=a *\left(\frac{b c}{b+c}\right)=\frac{\frac{a b c}{a+b}}{a+\frac{b c}{b+c}}=\frac{a b c}{a b+a c+b c}$
$\therefore(a * b) * c=a *(b * c)$
so $*$ is associative.
(b) Suppose e is an identity element, then $e * a=a * e=a$
$\frac{e a}{e+a}=a$
$e a=e a+a \quad$ M1
$e a$ cancels on both sides so there is no solution for e.
i.e. no identity element

AG 4
2. (a) $a \# b=a+b+1$

Now b \# $a=b+a+1$
Since + is commutative $a \# b=b \# a$
$\Rightarrow \#$ is also a commutative operation.
$(a \# b) \# c=(a+b+1) \# c$

$$
\begin{align*}
& =a+b+1+c+1 \\
& =a+b+c+2 \tag{A1}
\end{align*}
$$

$a \#(b \# c)=a \#(b+c+1)$

$$
\begin{equation*}
=a+b+c+1+1 \tag{AG}
\end{equation*}
$$

$$
\begin{equation*}
=a+b+c+2 \tag{A1}
\end{equation*}
$$

$\Rightarrow \#$ is also associative operation.
To show ($\mathbb{R}, \#$) is a group we need to show closure, identity element exists, inverses exist and it is associative (already shown).
It is closed since $a+b+1 \in \mathbb{R}$ for $a, b \in \mathbb{R}$.
There is a unique element $e(e \in \mathbb{R})$ such that
$p \# e=e \# p=p$ where $p \in \mathbb{R} \Rightarrow p+e+1=e+p+1=p$
$\Rightarrow e=-1$ as identity element
There are unique inverse elements for each element in \mathbb{R} such that
$p \# p^{-1}=p^{-1} \# p=-1$
$\Rightarrow p+p^{-1}+1=p^{-1}+p+1=-1$
$\Rightarrow p^{-1}=-p-2$
Hence $(\mathbb{R}, \#)$ forms a group.
3. (a) $a, b \in T \Rightarrow a * b \in T$
if $a * b=1, a b-a-b+2=1, \Rightarrow a b-a-b+1=0$
$\Rightarrow(a-1)(b-1)=0 \Rightarrow a=1$, or $b=1$ contradiction
so $a * b \in T$, i.e. closed
(AG) 5
(b)

$$
\begin{align*}
& (x * y) * z=(x y-x-y+2) * z \tag{AI}\\
& =x y z-x z-y z+2 z-x y+x+y-2-z+2 \\
& x y z-y z-z x-x y+x+y+z \\
& \begin{aligned}
x *(y * z) & =x *(y z-y-z+2) \\
& =x y z-x y-x z+2 x-x-y z+y+z-2+2 \\
& =(x * y) * z
\end{aligned} \tag{A1}
\end{align*}
$$

(A1)
(A1)

Note: as the operation is clearly commutative, there is no need to check both left and right identity, or both left and right inverse below
(c) $\quad a * e=a \Rightarrow e(a-1)=2(a-1) \Rightarrow e=2$ (since $a \neq 1) \quad$ (M1)(A1)

Hence 2 is the identity element for this operation.
(A1) 3
(d) $\quad a * a^{\prime}=2 \Rightarrow a a^{\prime}-a-a^{\prime}+2=2 \Rightarrow a^{\prime}(a-1)=a \Rightarrow a^{\prime}=a /(a-1)$

Hence $3^{\prime}=3 / 2$
A1 3
(e) (i) The formula is true for $n=1$ since $a=(a-1)^{1}+1$.

Assume that it is true for $n=k$, i.e. $\overbrace{a * a * \cdots * a}^{k \text { times }}=(a-1)^{k}+1$

$$
\begin{array}{ll}
\overbrace{a * a * \ldots * a}^{k+1 \text { times }}=\left((a-1)^{k}+1\right) * a=\left((a-1)^{k}+1\right) a-\left((a-1)^{k}+1\right)-a+2(\mathrm{M} 1) \tag{M1}\\
=(a-1)^{k} \times a+a-(a-1)^{k}-1-a+2 \\
=(a-1)^{k}(a-1)+1 & \text { (A1) } \\
=(a-1)^{k+1}+1 \\
\text { so the formula is proven by mathematical induction. } & \text { (A1) } \\
\text { (ii) } \quad \text { We require } a * a * \ldots * a=2 & \text { (M1) } 6 \\
\text { so that }(a-1)^{n}+1=2 \text { or }(a-1)^{n}=1 & \text { (A1) } \\
\text { Apart from } a=2, \text { the identity, the only solution is } a=0 \text {. } & \text { (A1) } \\
\text { Since } 0 * 0=2, \text { the element } 0 \text { has order } 2 \text {. } & \text { (A1) } 4
\end{array}
$$

4. (a) Since $\forall a \in G, e \circ a=a \circ e$ because e is the identity element of the group.
Then $e \in H$.
(b) Let $x, y \in H$, then $(x \circ y) \circ a=x \circ(y \circ a)$ (by associativity)

$$
\begin{align*}
& =x \circ(a \circ y)(\text { since } y \in H) \tag{R1}\\
& =(x \circ a) \circ y(\text { associativity }) \tag{R1}\\
& =(a \circ x) \circ y(x \in H) \tag{R1}\\
& =a \circ(x \circ y) \text { (associativity) }
\end{align*}
$$

Therefore, $(x \circ y) \circ a=a \circ(x \circ y)$
$\Rightarrow(x \circ y) \in H$.
(c)

$$
\begin{array}{rlrlrl}
& & e \circ a & =a \circ e & & \text { identity } \\
\Rightarrow & & \left(x^{-1} \circ x\right) \circ a & =a \circ\left(x^{-1} \circ x\right) & & \\
\Rightarrow & x^{-1} \circ(x \circ a) & =\left(a \circ x^{-1}\right) \circ x & & \text { associativity } \\
\Rightarrow & x^{-1} \circ(a \circ x) & =\left(a \circ x^{-1}\right) \circ x & & x \in H \\
\Rightarrow & \left(x^{-1} \circ a\right) \circ x & =\left(a \circ x^{-1}\right) \circ x & & \text { associativity } \\
& \text { Therefore, } x^{-1} \circ a & =a \circ x^{-1} & & \text { cancellation law }
\end{array}
$$

FINITE GROUPS - CAYLEY TABLES

5. Closure - yes, because the table contains no other elements.

Identity - yes, d.
Inverse - yes, every element has an inverse (or d appears in every row and column).
Associativity - no because,
$b \#(c \# e)=b \# a=e$ but $(b \# c) \# e=a \# e=b$
(A1)(A1)
6. (a) Note: Award (A3) if one error, (A2) if 2 errors, (A1) if 3 errors, (A0) for more

	a	b	c	d
a	b	\boldsymbol{c}	\boldsymbol{d}	a
b	\boldsymbol{c}	d	\boldsymbol{a}	b
c	\boldsymbol{d}	\boldsymbol{a}	\boldsymbol{b}	c
d	a	b	\boldsymbol{c}	d

(b) (i) using inverse elements

$$
\begin{align*}
& (b \# x) * c * a=d * a \\
& \Rightarrow b \# x=a \tag{AI}\\
& \Rightarrow d \# b \# x=d \# a \tag{AI}
\end{align*}
$$

$\Rightarrow x=d$
(ii) $a *(x \# b) * c * a=b * a$
$\Rightarrow a *(x \# b)=c$
$\Rightarrow c * a *(x \# b)=c * c$
$\Rightarrow x \# b=b$
$\Rightarrow x \# b \# d=b \# d$
$\Rightarrow x=a$
7. (a) The operation table is thus:

$(*)$	1	3	4	9	10	12
1	1	3	4	9	10	12
3	3	9	12	1	4	10
4	4	12	3	10	1	9
9	9	1	10	3	12	4
10	10	4	1	12	9	3
12	12	10	9	4	3	1

Note: Award (A3) if one entry is incorrect, (A2) if two entries are incorrect, (A1) if three are incorrect, (A0) iffour or more are incorrect.
(b) $*$ is associative and commutative (known)

The set is closed under *
1 is the identity element
Every element has an inverse because 1 is on each row (or column).
(c) 1 is of order 1

12 is of order 2
3 and 9 are of order 3
(A1)
4 and 10 are of order 6
(A1) 3
Note: If one answer is wrong, award (A1), if two or more answers are wrong award (A0).
(d) There are four subgroups:
$\{1\}$
$\{1,12\}$
$\{1,3,9\}$
$\{1,3,4,9,10,12\}$
(A1)
(A2)
3
8.
(a) (i) $3 \otimes 5=15$
(A1)
(ii) $3 \otimes 7=5$
(A1)
(iii) $9 \otimes 11=3$
(A1)
(b) (i) The operation table is

\otimes	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 5}$
$\mathbf{1}$	1	3	5	7	9	11	13	15
$\mathbf{3}$	3	$\mathbf{9}$	$\mathbf{1 5}$	$\mathbf{5}$	(11)	1	7	13
$\mathbf{5}$	5	$\mathbf{1 5}$	$\mathbf{9}$	3	13	7	1	11
$\mathbf{7}$	7	$\mathbf{5}$	3	$(\mathbf{1})$	15	13	11	9
$\mathbf{9}$	9	$\mathbf{1 1}$	13	15	1	$\mathbf{3}$	5	7
$\mathbf{1 1}$	11	1	7	13	$\mathbf{3}$	$\mathbf{9}$	15	5
$\mathbf{1 3}$	13	7	1	11	5	15	9	3
$\mathbf{1 5}$	15	13	11	9	7	5	3	1

Note: Award (A2) if the circled numbers are correct, (AI) if 3 or 4 are correct, (A0) otherwise. The bold numbers were found in part (a)
(ii) Closure: The table shows that no new elements are generated.
(R1)
Identity: 1 is the identity.
(R1)
Inverse: Every row and column has a " 1 ".
(RI)
(Associative given).
So (S, \otimes) is a group.
(c) (i) Elements of order 2 are 7, 9, 15.
(A2)

Note: \quad Award $(A 1)$ if one correct element is given.
(ii) Elements of order 4 are 3,5,11, 13 .
(MI)(AI)

Note: If no working shown, award (M1)(A0) if one correct element is given.
(d) Using 3 as the generator, a sub-group of order 4 is $\{1,3,9,11\}$. (MI)(A1)

Note: Another possibility is $\{1,5,9,13\}$.
9. (a)

$$
\begin{align*}
(3 * 9) * 13 & =13 * 13=1 \tag{M1}\\
\text { and } 3 *(9 * 13) & =3 * 5=1 \tag{M1}\\
\text { hence }(3 * 9) * 13 & =3 *(9 * 13) \tag{AG}
\end{align*}
$$

(b) To show that $(U, *)$ is a group we need to show that:
(1) U is closed under $*$. A table is an easy way of showing closure for this finite set.

$(*)$	1	3	5	9	11	13
1	1	3	5	9	11	13
3	3	9	1	13	5	11
5	5	1	11	3	13	9
9	9	13	3	11	1	5
11	11	5	13	1	9	3
13	13	11	9	5	3	1

Note: Award (C4) for a completely accurate table, (C3) for 1 or 2 errors, (C2) for 3 or 4 errors, (C1) for 5 or 6 errors, (C0) for 7 or more errors.
since for each $a, b \in U, a * b \in U$, closure is shown.
(2) Since multiplication is associative, it is true in this case too.
(3) Since $1 * a=a * 1=a$ for all $a \in U, 1$ is the identity.
(4) 1 appears in each row of the table once, so every element has a unique inverse.
$\left(1^{-1}=1,3^{-1}=5,5^{-1}=3,9^{-1}=11,11^{-1}=9,13^{-1}+13\right)$
(c) (i) If G is a group and if there exists $a \in G$, such that $G=\left\{a^{n}: n \in \mathbb{Z}\right\}$
Then G is a cyclic group and a is called a generator.
(C2) 2
(ii) By inspection:

3 is a generator since:

$$
\begin{align*}
& 3^{2}=9,3^{3}=13,3^{4}=11 \tag{M1}\\
& 3^{5}=5,3^{6}=1 \tag{A1}
\end{align*}
$$

Also, 5 is a generator:

$$
\begin{align*}
& 5^{2}=11,5^{3}=13,5^{4}=9 \tag{M1}\\
& 5^{5}=3,5^{6}=1 \tag{A1}
\end{align*}
$$ similarly $11^{3}=1$ and $13^{2}=1$.7

(d) Since the order of this group is 6, by Lagrange's Theorem, the proper subgroups can only have orders 2 or 3 .
Since 13 is the only self inverse $13^{2}=1$,
the only subgroup of order 2 is $\{1,13\}$
No sub-group may include 3 or 5 since these are the generators of the group.
The only elements left are 9 and 11.
Now, $9 * 11=1,9^{2}=11$, and $11^{2}=9$.
Therefore, $\{1,9,11\}$ is the other sub-group.

PERMUTATION GROUPS

10. (a) Since $3!=6$, order of $S=6$.
(M1) (R1)
(b) Members of S are $p_{0}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right), p_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right), p_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$,

$$
p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \tag{AG}\\
1 & 3 & 2
\end{array}\right), p_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), p_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

Note: Award (A2) for 3 correct permutations; (A1) for 2 (A0) for 1

$$
\begin{align*}
& p_{3} \circ p_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), p_{4} \circ p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \tag{M1}\\
& p_{3} \circ p_{4} \neq p_{4} \circ p_{3} \tag{R1}
\end{align*}
$$

Note: There are other possibilities to show that the group is not Abelian.
(c)

$$
\begin{align*}
& p_{1}^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=p_{2} \\
& p_{1}^{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)=p_{0} \tag{M1}
\end{align*}
$$

(Note that p_{0} is the identity of the group S.)
Hence $\left\{p_{0}, p_{1}, p_{2}\right\}$ form a cyclic group of order 3 under composition. (R1)
Note: Some candidates may write $\left\{p_{0}, p_{1}, p_{2}\right\}$ is a subgroup of order 3, (award (A1)), and write the following table, (award (R1)):

\circ	p_{0}	p_{1}	p_{2}
p_{0}	p_{0}	p_{1}	p_{2}
p_{1}	p_{1}	p_{2}	p_{0}
p_{2}	p_{2}	p_{0}	p_{1}

11. (a) $\left(\begin{array}{llll}a & b & c & d \\ b & d & a & c\end{array}\right)$
(b) $\quad\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right) ;\left(\begin{array}{llll}a & b & c & d \\ b & a & c & d\end{array}\right)$

Note: There are many correct answers for the second permutation.
(c) $\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right)$

$$
\left(\begin{array}{llll}
a & b & c & d \tag{A1}\\
b & c & d & a
\end{array}\right) ;\left(\begin{array}{llll}
a & b & c & d \\
c & d & a & b
\end{array}\right) ;\left(\begin{array}{llll}
a & b & c & d \\
d & a & b & c
\end{array}\right)
$$

Let p, q, r, s be the four permutations in the subgroup. Closure is shown by the group table, i.e.

	p	q	r	s
p	p	q	r	s
q	q	r	s	p
r	r	s	p	q
s	s	p	q	r

Inverse: each element has an inverse,
i.e. $p^{-1}=p, q^{-1}=s, r^{-1}=r, s^{-1}=q$.

Note: There are other possible answers.

GROUPS AND RELATIONS (COSETS)

12. (a) $x^{-1} x=e \in H$. $\Rightarrow x R x \Rightarrow R$ is reflexive
$x R y \Rightarrow x^{-1} y \in H \Rightarrow\left(x^{-1} y\right)^{-1} \in H$
A1
$x^{-1} y\left(x^{-1} y\right)^{-1}=e$ so $\left(x^{-1} y\right)^{-1}=y^{-1} x$
A1
$\Rightarrow y^{-1} x \in H \Rightarrow y R x \Rightarrow R$ is symmetric R1
$x R y$ and $y R z \Rightarrow x^{-1} y \in H$ and $y^{-1} z \in H$
$\therefore\left(x^{-1} y\right)\left(y^{-1} z\right) \in H$ since H is closed.
A1
$x^{-1}\left(y y^{-1}\right) z \in H \Rightarrow x^{-1} z \in H \quad$ A1
$\Rightarrow x R z \Rightarrow$ is transitive. $\quad \mathrm{R} 1$
$\therefore R$ is an equivalence relation. AG
(b) $\quad p^{3}=q^{2}=e \quad q p=p^{2} q$

$$
\begin{aligned}
q p^{2} & =(q p) p=\left(p^{2} q\right) p \\
& =p^{2}(q p)=p^{2}\left(p^{2} q\right)=p^{3}(p q)=p q
\end{aligned}
$$

(c) $H=\left\{e, p^{2} q\right\}$
$y R p q \Rightarrow y^{-1} p q=e \Rightarrow p q=y$
or $y^{-1} p q=p^{2} q \Rightarrow p q=y p^{2} q$
$p q^{2}=y p^{2} q^{2} p=y p^{2}$
A1
$p^{2}=y p^{3}$
A1
$p^{2}=y$
\therefore The equivalence class is $\left\{p^{2}, p q\right\}$

OTHERWISE

The equivalence class of $p q$ is the coset $p q H$ which contains $p q$ and $p q p^{2} q=p p q q=p^{2}$.

Extra question

There are 3 equivalence classes (3 cosets)

$$
\begin{aligned}
& \boldsymbol{H}=\left\{e, p^{2} q\right\}, \\
& \boldsymbol{p} \boldsymbol{H}=\{p, q\} \\
& \boldsymbol{p}^{2} \boldsymbol{H}=\left\{p^{2}, p q\right\}
\end{aligned}
$$

ISOMORPHISMS

13. (a) f is injective since $f(x)=f(y)<=>3^{x}=3^{y}<=>x=y$
f is surjective since if $z \in \mathbb{R}^{+}, x=\log _{3}(z) \in \mathbb{R}$ and $z=f(x)$
For every x, y in $(\mathbb{R},+)$,
$f(x+y)=3^{(x+y)}=3^{x} 3^{y}=f(x) \times f(y) \quad$ (M1)(A1) 6
(b) $f^{-1}(z)=\log _{3}(z)$
14. (a) $\operatorname{Since}(a+b \sqrt{2})(c+d \sqrt{2})=a c+2 b d+(a d+b c) \sqrt{2}$, and $(a c+2 b d)^{2}-2(a d+b c)^{2}=\left(a^{2}-2 b^{2}\right)\left(c^{2}-2 d^{2}\right) \neq 0$, S is closed under multiplication.
$1=1+0 \sqrt{2}$ is the neutral element.
Finally, $\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}} \in S$
and $\left(\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}\right)(a+b \sqrt{2})=1$, so every element of S has an inverse.
(b) To show that $f(x)$ is an isomorphism, we need to show that it is injective, surjective and that it preserves the operation.
Injection: Let $x_{1}=a+b \sqrt{2}, x_{2}=c+d \sqrt{2}$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow a-b \sqrt{2}=c-d \sqrt{2} \Rightarrow(a-c)+(d-b) \sqrt{2}=0$
Surjection: For every $y=a-b \sqrt{2}$ there is $x=a+b \sqrt{2}$
$(f(a+b \sqrt{2}))(f(c+d \sqrt{2}))=\left(f\left(x_{1}\right)\right)\left(f\left(x_{2}\right)\right)$
15. (a)

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

(A1) 1
(b)

$(*)$	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c	d	c	a	b
d	c	d	b	a

Notes: There are many other correct solutions, with a different ordering Award (A4) if all entries are correct,(A3) if all but 1 entry are correct, (A2) if all but 2 entries are correct,(A1) if all but 3 entries are correct.
16. (a)

o	f	g	h	j
f	f	g	h	j
g	g	f	j	h
h	h	j	f	g
j	j	h	g	f

Note: Award (A3) for all correct, (A2) for 1 error, (A1) for 2 errors, (A0) otherwise.
(b)

$+_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

x_{5}	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

To investigate isomorphisms we can consider the order of elements for $+_{4}$, the identity is 0,1 has order 4,2 has order 2 and 3 has order 4, (A1) for x_{5}, the identity is 1,2 has order 4,3 has order 4 and 4 has order 2, (A1) for ${ }^{\circ}$, the identity is f, and g, h and j all have order 2 .
Hence $+_{4}$ is isomorphic with x_{5}.
Corresponding elements are

$$
\begin{equation*}
0 \leftrightarrow 1,1 \leftrightarrow 2,2 \leftrightarrow 4,3 \leftrightarrow 3, \text { OR } 0 \leftrightarrow 1,1 \leftrightarrow 3,2 \leftrightarrow 4,3 \leftrightarrow 2 \tag{A1}
\end{equation*}
$$

Note: Corresponding elements must be correct for final (A1).
17. (a) By using the composition of functions we form the Cayley table

\circ	f_{1}	f_{2}	f_{3}	f_{4}
f_{1}	f_{1}	f_{2}	f_{3}	f_{4}
f_{2}	f_{2}	f_{1}	f_{4}	f_{3}
f_{3}	f_{3}	f_{4}	f_{1}	f_{2}
f_{4}	f_{4}	f_{3}	f_{2}	f_{1}

Note: For each error in the above table deduct one mark up to a maximum of three marks.

From the table, we see that (T, \circ) is a closed and is commutative.
f_{1} is the identity.
$f_{i}^{-1}=f_{i}, i=1,2,3,4$.
Since the composition of functions is an associative binary operation an Abelian group.
(b) The Cayley table for the group (G, \diamond) is given below:

\diamond	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Note: For each error in the entries deduct one mark up to a maximum of two marks.

Define $f: T \mapsto G$ such that $f\left(f_{1}\right)=1, f\left(f_{2}\right)=3, f\left(f_{3}\right)=5$ and $f\left(f_{4}\right)=7$
Since distinct elements are mapped onto distinct images, it is a bijection.(R1)
Since the two Cayley tables match, the bijection is an isomorphism.
Hence the two groups are isomorphic.
(AG) 5
18. (a) B is the set $\{1, i,-1,-i\}$

This set is closed under multiplication.
Associative, since it is normal complex number multiplication.
The identity element is 1 .
The inverse of i is -i , and vice versa, 1 and -1 are self inverses.
(b)

\times	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

(c) Order of 1 is 1

Order of 3 is 4 , since $3^{4}=1$
Order of 7 is 4 , since $7^{4}=1$
Order of 9 is 2 , since $9^{2}=1$
(d) The two groups will have a bijection in which the following correspond:
$1 \leftrightarrow 1,3 \leftrightarrow \mathrm{i}, 7 \leftrightarrow \mathrm{i}$, and $9 \leftrightarrow-1$ (or $3 \leftrightarrow-\mathrm{i}, 7 \leftrightarrow \mathrm{i}$)
Both groups have the same structure, the bijection preserves the operation. (R1)
19.

(a)

\circ	U	H	V	K
U	U	H	V	K
H	H	U	K	V
V	V	K	U	H
K	K	V	H	U

(A4) 4
Note:(A4) for 15-16 correct entries,(A3) for 13-14, (A2) for 11-12, (A1) for 9-10, (A0) o/w
(b) Closure: U, H, K and V are the only entries in the table. So it is closed. (A1) Identity: U, since $U T=T U=T$ for all T in S.
Inverses: $U^{-1}=U, H^{-1}=H, V^{-1}=V, K^{-1}=K$
Associativity: Given
Hence (S, \circ) forms a group.
(c) $C=\{1,-1, \mathrm{i},-\mathrm{i}\}$

\diamond	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

Note: Award (A3) for 15-16 correct entries, (A2) for 13-14, (A1) for 11-12, (A0) for fewer
(d) Suppose $f: S \rightarrow C$ is an isomorphism.

Then $f(U)=1$, the identity in C, since f preserves the group operation.(M1)(C1) Assume $f(H)=\mathrm{i}, 1=f(U)=f(H \circ H)=f(H) \diamond f(H)$.
But $f(H)=\mathrm{i}$, and i is not its own inverse, so f is not an isomorphism.
4
Note: Accept other correctly justified solutions.

THEORETICAL

20. Let $a^{-1}=b$

Then $e=b \times a=b \times a \times a$
so that $e=(b \times a) \times a=e \times a$
and therefore $e=a$
Note: There are other correct solutions.
21. (a) If G is a group and H is a subgroup of G then the order of H is a divisor of the order of G.
(b) Since the order of G is 24 , the order of a must be $1,2,3,4,6,8,12$ or 24
The order cannot be $1,2,3,6$ or 12 since $a^{12} \neq e$
Also $a^{8} \neq e$ so that the order of a must be 24
Also $a^{8} \neq e$ so that the order of a must be 24
Therefore, a is a generator of G, which must therefore be cyclic.
(R1) 5
22. (a) A cyclic group is a group which is generated by one of its elements (or words to that effect).
(b) We can assume that ($\mathrm{G}, \#$) has at least two elements and hence contains an element, say b, which is different from e, its identity.
The order of b is equal to the order q of the subgroup it generates.
By Lagrange's theorem q must be a factor of p and since p is prime either $q=1$ or $q=p$.
Since $b \neq e$ we see that $q \neq 1$ and therefore $q=p$.
But if the order of b is p then b generates $(G, \#)$ which is therefore cyclic.
23.

For $a \in H, a^{-1 *} a=e \in H$ so H contains the identity. (A1)
For $a \in H, a^{-1} e=a^{-1} \in H$ so H contains all the inverse elements. (AI)

* is associative on G and therefore on H. (AI)

For $a, b \in H, a^{-1} \in H$ so $\left(a^{-1}\right)^{-1} * b=a * b \in H$ so closure confirmed. (AI)(AI)
The four requirements are satisfied so $\left(H,{ }^{*}\right)$ is a subgroup.
(RI)
24. Consider $a * b$. This cannot be a or b since $a * b=a \Rightarrow b=e$ which is not the (M1)
case and similarly for b. So $a * b=$ either e or c.
If $a * b=e$, then a, b form an inverse pair so $b * a=e$.
Suppose $a^{*} b=c$. Consider $b * a$. As before, this cannot equal a or b and it
cannot equal e either because that would imply that $a * b=e$ which it is not.
It follows that $b * a=c$.
Thus in both cases, $a * b=b * a$.
25. Given $\left(G,{ }^{*}\right)$ is a cyclic group with identity e and $G \neq\{e\}$ and G has no proper subgroups.
If G is of composite finite order and is cyclic, then there is $x \in G$ such that x generates G.
If $|G|=p \times q, p, q \neq 1$, then $<x^{p}>$ is a subgroup of G of order q which is
impossible since G has no non-trivial proper subgroup.
Suppose the order of G is infinite. Then $<x^{2}>$ is a proper subgroup of G which (M1)
contradicts the fact that G has no proper subgroup.
So G is a finite cyclic group of prime order.
26. If one of the sets H and K is contained in the other then either $H \cup K=H$ or $H \cup K=K$.
In either case it is a subgroup of (G, \circ).

Only if:

Conversely, suppose that $(H \cup K, \circ)$ is a subgroup of (G, \circ) and that H is not contained in K.
Then there exists an element b of H which is not included in K.
Let a be any element of K.
Then $a b \in H \cup K$ (since ($H \cup K$, o) is a group).
If $a b \in K$ then $b=a^{-1} a b \in K$ which is a contradiction of our hypothesis. (C1)
Hence $a b \notin K$ and therefore $a b \notin H$ so that $a b b^{-1} \in \mathrm{H}$
which shows that $K \subseteq H$ since a was any element of K.
Therefore $H \subseteq K$ or $K \subseteq H$.

OR

Proof by contradiction:
$K \not \subset H$ then there exists $m \in K, m \notin H$
And
$H \not \subset K$ then there exists $n \in H, n \notin K$.
Suppose $m \circ n \in H$ then $m \circ n \circ n^{-1} \in H$ is a contradiction
Suppose $m \circ n \notin K$ then $n=m^{-1} \circ m \circ n \in K$ is a contradiction
Hence $m \circ n \notin H \cup K$ a contradiction
Therefore $H \subseteq K$ or $K \subseteq H$
27. (a) Let (G, \circ) and (H, \bullet) be two groups. They are said to be isomorphic if there exists a one-to-one transformation $f: G \rightarrow H$ which is surjective (onto) with the
property that for all $x, y \in G, f(x \circ y)=f(x) \bullet f(y)$.

Note: Some candidates may say that the groups (G, \circ) and ($H, \bullet)$ are isomorphic if they have the same Cayley table (or group table). In that case award (C1).
(b) Since $f: G \rightarrow H, f(x) \in H$ for some $x \in G$.

Since e^{\prime} is the identity element in H,
$e^{\prime} \bullet f(x)=f(x)=f\left(x^{\circ} e\right)=f(e) \bullet f(x)$.
By the right cancellation law, $e^{\prime}=f(e)$.
(c) Suppose $G=<a\rangle$, the cyclic group generated by a, i.e. n is the smallest positive integer such that $a^{n}=e$, the identity in G.
Let $f: G \rightarrow H$ be an isomorphism. Let $f(a)=b \in H$.
$f\left(a^{2}\right)=f(a \circ a)=f(a) \bullet f(a)=(f(a))^{2}$.
In general $f\left(a^{m}\right)=(f(a))^{m}, 1 \leq m \leq n$.
By (iii) (b) $(f(a))^{n}=e^{\prime}$, the identity in H. Hence $b^{n}=e^{\prime}$ and consequently H is a cyclic group of order n with generator b.
28. (a) Suppose a is of order n and is a^{-1} of order m.

Therefore $e=e * e=\left(a^{-1}\right)^{m} * a^{n}$
If $m>n$, then $e=\left(a^{-1}\right)^{m-n} *\left(a^{-1}\right)^{n} * a^{n}=\left(a^{-1}\right)^{m-n} *\left(a^{-1} * a\right)^{n}$.
Hence $e=\left(a^{-1}\right)^{m-n}$. This implies a^{-1} is of order $m-n<m$
which is a contradiction. So m is not greater than n.
If $m<n, e=\left(a^{-1}\right)^{m} * a^{m} * a^{n-m}=\left(a^{-1} * a\right)^{m} * a^{n-m}$
Hence $e=a^{n-m}$, which implies a is of order $n-m<n$.
This is a contradiction.
Therefore $m=n$.
(b) Let $S(m)$ be the statement: $b^{m}=p^{-1} * a^{m} * p$.
$S(1)$ is true since we are given $b=p^{-1} * a * p$
Assume $S(k)$ as the induction hypothesis.
$b^{k+1}=b^{k} * b=\left(p^{-1} * a^{k} * p\right) *\left(p^{-1} * a * p\right)=p^{-1} * a^{k+1} * p$
which proves $S(k+1)$.
Hence, by mathematical induction $b^{n}=p^{-1} * a^{n} * p(n=1,2, \ldots)$.
29. (a) $(x y)^{2}=e$
$\Rightarrow(x y)(x y)=e \Rightarrow x(y x) y=e$
Order of $x y=2$
Associative property
$\Rightarrow x x(y x) y y=x e y$
Left and right-multiply
$\Rightarrow e(y x) e=x y$
Order of elements given
$\Rightarrow y x=x y$
OR
Since x, y and $x y$ are self-inverses, $x^{-1}=x, y^{-1}=y$ and $(x y)^{-1}=x y$
Consider $x y=(x y)^{-1}$

$$
\begin{equation*}
=y^{-1} x^{-1} \tag{R1}
\end{equation*}
$$

$$
\begin{equation*}
=y x \tag{M1}
\end{equation*}
$$

(M1)(AG)
(b) Let a be any element of a group, whose identity is e.

Let a^{-1} be an inverse of a, and let b be another inverse of a
different from a^{-1}.
Now, $b=b e=b\left(a a^{-1}\right)=(b a) a^{-1}$; identity and associativity properties,
then, $b=e a^{-1}=a^{-1}$, which contradicts the assumption that $b \neq a^{-1}$,
therefore there is only one inverse of a, namely a^{-1}.
OR
Let a be any element of a group whose identity is e. Let b and c be
inverses of a, so that $a b=b a=e$.
Consider $b=b(a c)$

$$
\begin{align*}
& =(b a) c \tag{M1}\\
& =c \tag{M1}
\end{align*}
$$

Thus any two inverses are equal, so the inverse is unique.
(c) If G is Abelian, then $f(x y)=(x y)^{-1}=y^{-1} x^{-1}=x^{-1} y^{-1}=f(x) f(y)$ and f is an isomorphism.
If f is an isomorphism, then $f(x y)=f(x) f(y)$, that is,
$(x y)^{-1}=x^{-1} y^{-1}=(y x)^{-1}$
Then $x y=y x$
and hence G is Abelian.

