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MATH HL
OPTION
REVISION - SOLUTIONS
SETS, RELATIONS AND GROUPS

Instructor: Christos Nikolaidis

PART B: GROUPS

abc
(a*b)*c=( ab j*c= a+tb ___ abc (MDAIAI
a+b ab " ab+ ac + bc
c
a+b
abc
a*(b*c)=a*[bc)= atb ___ abc (MDAIAI
b+c bc ab+ ac + bc
a+
b+c
S(axb)xc=ax (bx*c) R1
SO * 18 associative. AG
Suppose e is an identity element, thene x a=a xe=a M1)
ea__, Al

e+a
ea=ea+ta M1
ea cancels on both sides so there is no solution for e. R1
i.e. no identity element AG
atb=a+b+1
Nowb#a=b+a+1 M1)
Since +is commutative a#b=b # a (A1)
= # is also a commutative operation. (AG)
(a#bfc=(a+ b+ D

=q+b+1+c+1

=q+b+c+2 (A1)
atb#c)y=att(b+c+1)

=q+b+c+1+1

=q+b+c+2 (A1)
= # is also associative operation. (AG)
To show (R, #) is a group we need to show closure, identity
element exists, inverses exist and it is associative (already shown).
Itisclosedsincea+b+1 € R fora, b € R. (A1)
There is a unique element e(e € R) such that
phte=ettp=pwherepe Ropt+tet+tl=etp+1=p
= e =—1 as identity element (A1)
There are unique inverse elements for each element in R such that
p#pl=pH#p=-1 (M1)
Sptp +1=pl+p+1=-1
=pl=p-2 (AD)
Hence (R, #) forms a group. (AG)
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(@ a,beT=axbeT (A1)
ifaxb=1,ab—a—-b+2=1,=ab—a—-b+1=0 (MI)(A1)
=(@-1D)(b-1)=0=a=1,or b=1 contradiction (M1)(RI)
so a*beT, ie. closed (AG)

(b)

(r*y)rz={y—x—y+2)*z, f41)
=nzr-ixzZ-yE+lz-ww+x+y-2-z+12 fAl)
NI — VI —ZN—XV+X+V+I (AG)
xe(ysez)=x*(yz—y—z+42) A1)
=r—-X-iz+2lx—x—vI+y+:-2+2 f41)
=[x*y)ez i41l)

Note: as the operation is clearly commutative, there is no need to check both left and right
identity, or both left and right inverse below

(c) a*e=a=e(a-1)=2(a-1)=>e=2 (since a#1) (M1)(A1)
Hence 2 is the identity element for this operation. (A1)

(d axa'=2=aa’-a-a+2=2=a’(a-1)=a=a’=a/(a-1) MI1Al
Hence 3°=3/2 Al

(¢) (i)  The formula is true for n=1 since a=(a—1)' +1. (R1)

k times
.. . — k
Assume that it is true for n =k ,i.e. a*a*---*a=(a—-1)" +1 M1)
k+1 times
k k k

a*a*---*az((a—l) +1)*a =((a—1) +1)a—((a—1) +l)—a+2(M1)

=(a-1)'xa+a—(a-1)"-1-a+2 (A1)

=(a-1)f(a-1)+1 (A1)

=(a-1)""+1

so the formula is proven by mathematical induction. (R1)
(i) Werequire a*a*...*a=2 (M1)

sothat (a—1)"+1=2or (a—-1)" =1 (A1)

Apart from a =2, the identity, the only solutionis a=0. (Al)

Since 0*0=2, the element 0 has order 2. (A1)

(a) Since Va € G, e-a=a-ebecause e is the identity element of
the group. (R2)
Thene € H. (AG)

(b) Letx,y e H, then (x-y).a=ux-(y-a)(by associativity) (R1)

=xo(a-y)(sincey € H) R1)
= (x - a) - y (associativity) R1)
=(a-x).y(x € H) (RT)
=a - (x - y) (associativity) (R1)
Therefore, (x o y)ca=a- (x-y)
= (x-y) € H. (AG)
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() e-a= ao-e identity (R1)

= (xflox)oa: ao(xflox) (Rl)
= x e (xoa)= (a- xﬁl) o X associativity
= x'e(aox)= (aoxox xeH R1)
=  (xlea)ex= (aox)ex associativity (R1)
Therefore,x ' ca= aox cancellation law
andx ' e H (AG) 4
[11]
FINITE GROUPS —- CAYLEY TABLES
5. Closure - yes, because the table contains no other elements. (RI)
Identity - yes, d. (R1)
Inverse - ves. every element has an inverse (or d appears in every row and
column), fR1)
Associativity - no because. (R1)
b#(c#el=b#a=e but (b#c)de=afe=h fAl)Al
[6]
6. (a) Note: Award (A3) if one error, (42) if 2 errors, (41) if 3 errors, (A0) for more
i h & !fl
alb ¢ d o
h & i]r i h
c |ld a b ¢
tfl i h C tfl fr"'!"} 4
(b) (1) using inverse elements
(b#x)rcra=d=*a
= hi#ix=a f41)
= d#bt#x=d#a
= x=d fAl)
() a={x#b)rcra=h=*a
—ag*({x#h)=¢r f41)
—cras(x#b)=c*c
—= x#h=h f41)
— x#h#d = b#d
=S X=1 i41) 5
[9]
7. (a)  The operation table is thus:
(=] 1]13[4]9][10]12
1|1 ]|3]4]9]|10f12
313191121 1[41]10
414 (1213110119
919 (11]10]3 (12| 4
10j10( 4 |1 |12[9] 3
121210914 |3 |1
(A4) 4

Note: Award (A3) if one entry is incorrect, (A2) if two entries are incorrect,
(A1) if three are incorrect, (A0) if four or more are incorrect.

(b) = is associative and commutative (known) (A1)
The set is closed under * (A1)
1 is the identity element (A1)
Every element has an inverse because 1 is on each row (or column). (A1) 4



(c) lisoforderl

12 is of order 2 (A1)
3 and 9 are of order 3 (A1)
4 and 10 are of order 6 (A1) 3
Note: If one answer is wrong, award (A1), if two or more answers are wrong award (A0).
(d)  There are four subgroups:
{1}
(1,12} (Al)
{1,3,9} (A2)
{1,3,4,9, 10, 12} 3
8.
{a) (1) I@5=15 f41)
(i) 3I®T=5 (A1)
(i) 9®11=3 (A1) 3
{(b) (1)  The operation table 1s
& 1 3 5 7 9 11 13 15
1 1 3 5 7 i1 13 15
3 3 9 15 5 l 7 i3
s 5 15 3 13 7 1 11
7 7 5 3@ 15 131 9
9 9 Gh 13 15 | 3 5 7
11 11 1 7 13 3 ) 15 5
13 i3 T ] 11 3 15 9 3
15 | 15 13 11 9 7 5 3 I (42
Note: Award (42) if the circled numbers are correct, 41) if 3 or 4 are correct,
{40) otherwise. The bold numbers were found in part (a)
(1)  Closure: The table shows that no new elements are generated. (RI1)
Identity: 1 is the identity, (R1)
Inverse: Every row and column has a 1™, iR1)
{Associative given).
So (S, @) is a group. {AG)
{c) (1) Elements of order 2 are 7, 9. 15. f42)
Note: Award {47) if one correct element is given.
(1) Elements of order 4 are 3, 5, 11. 13. M)Al
Note: If no working shown, award (M1)(40) if one correct element 15 given. 4
(d) Using 3 as the generator, a sub-group of order 4 1s {1,3.9,11}. fM1)fAl)
Note: Another possibility is {1,5,9,13}. 5
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(a)

(b)

(3x9)+13 =13%13 =1 (M1)
and 3x(9x13) =3x5 =1 (M1)
hence (3+9)%13 = 3%(9x13) (AG)

To show that (U, %) is a group we need to show that:

2

(1)  Uis closed under =. A table is an easy way of showing closure for this finite set.

) | 1 3 5 9 11 13
1 1 3 5 9 11 13
3 3 9 1 13 5 11
5 5 1 11 3 13 9
9 9 13 3 11 1 5
1| 1 5 13 1 9 3
13| 13 11 9 5 3 1 (C4)

Note: Award (C4) for a completely accurate table, (C3) for 1 or 2 errors,

(c)

(d)

(C2) for 3 or 4 errors, (Cl) for 5 or 6 errors, (C0) for 7 or more errors.

since for each a, b € U, ax b € U, closure is shown. (C1)
(2)  Since multiplication is associative, it is true in this case too. (C1)
(3) Since 1xa=axl =afor all a € U, 1 is the identity. (C2)

(4) 1 appears in each row of the table once, so every element
has a unique inverse.

(1'=1,3"=55"=39"=11,11"=9,13"+13) (€2)

(i) If Gisa group and if there exists a € G, such that
G={d"neZ}
Then G is a cyclic group and « is called a generator. (C2)

(i) By inspection:
3 is a generator since:

32=9,3°=13,3*=11 (M1)
33=5,3°=1 (A1)

Also, 5 is a generator:
52=11,5=13,5*=9 (M1)
5°=3,5=1 (AD)
9 cannot be a generator since 93 =1 (C1)
similarly 11° =1 and 13* = 1. (C1)(C1)

Since the order of this group is 6, by Lagrange’s Theorem, the

proper subgroups can only have orders 2 or 3. (R1)
Since 13 is the only self inverse 132=1, (R1)
the only subgroup of order 2 is {1, 13} (A1)
No sub-group may include 3 or 5 since these are the generators of the group.
The only elements left are 9 and 11. (R1)
Now, 9x11=1,9?= 11, and 112=9. (M2)
Therefore, {1, 9, 11} is the other sub-group. (A1)

11
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PERMUTATION GROUPS

10. (a) Since 3! =6, order of S=6. (M1) (R1)
(b) Members ofSarep():(l 2 3j,p1= (1 2 3j,p2= (1 2 3}, (AG)
123 231 312
123 123 123
p3:[132}’p4:(213j’p5:(321j (82

Note: Award (A2) for 3 correct permutations; (A1) for 2 (A0) for 1
123Y123) (123 123Y123) (123
p3°p4:(1 3 2}[2 1 3]2[3 1 2j’p4°p3:[2 1 3](1 3 2]2[2 3 J MD
D3 °P4#Paop3 (R1)

Note: There are other possibilities to show that the group is not Abelian.

, (1 23)123) (123)
© m :(2 3 J(z 3 1)2(3 1 2J_p2
. (12 3Y123) (123
s :[3 1 2}(2 3 IJ:(I 2 3J:p°' MD
(Note that py is the identity of the group S.)

Hence {py, p1, p»} form a cyclic group of order 3 under composition.  (R1)
Note: Some candidates may write {py, p;, p2} is a subgroup of order 3,
(award (A1)), and write the following table, (award (R1)):

° Po 14! P2
Po Po P P2
)4 Pi1 P2 Po
P2 P2 Po P1

1. (a) (a boc d] (A1)
b d a c
®) (a b c d];(a b ¢ d] (A2)
a b ¢ d b a c¢ d

Note: There are many correct answers for the second permutation.

© a b ¢ d
¢ a b ¢ d
a

b ¢ d a b ¢ d a b c d
; ; (AD(AD)(AT)
b ¢ d a c d a b d a b c
Let p, g, r, s be the four permutations in the subgroup. Closure is
shown by the group table, i.e. (M1)
P q r S
p p q r S
q q r S P
r r s p q
s s p q r
(A1)
Inverse: each element has an inverse, (M1)
ie. p71 =p, q71 =s,rl=psl= q. (A1)

Note: There are other possible answers.

(8]
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GROUPS AND RELATIONS (COSETS)

12. (a) x'x=eeH =xRx= Risreflexive
xRy :>x71y eH=> (x*ly)f1 eH
eyt =eso () =yx
=y 'x e H= y R x = R is symmetric
xRyandyRz=x'yeHandy 'ze H

. (x W)y '2) e H since H is closed.
xﬁl(yyfl)z eH= x'zeH
= x Rz = R is transitive.
.. R is an equivalence relation.
b p=¢=c qp=pq
ap” = (gp)p = (P’9)p
=p’(ap) =P°1’9) =P’ (P9) = pg
(©) H={ep’q}
yRpq :>y’21pq =e=pg=y
01’%’ pqzzlg q :>P2‘] =yrq
P;I :)437 q p=Jip
p =yp
pr=y
.. The equivalence class is {p2 , pq}
OTHERWISE

The equivalence class of pq is the coset pgH which contains pq and pgp*q = ppqq = p’.

Extra question
There are 3 equivalence classes (3 cosets)

H={e, p’q},
PH={p, q}

PH={p*, pq

ISOMORPHISMS

13. (a) fisinjective since f{x) =f{y) <=>3" =3 <=>x=y
fis surjective since if z € R*, x =log 3(z) € R and z = f{x)

For every x, y in (R, +),
faty) =30 =33 = fix) < fy)
(b) f'(2)=logs(2)

14. (a) Since (a+ bv2 )+ d2 ) =ac +2bd + (ad + bc)2 |
and (ac + 2bd)* — 2(ad + be)* = (a* — 2b%)(¢* -

S is closed under multiplication.
1=1+ 042 is the neutral element.

ab\/_

Finally, esS
Y a’ - b2

2

Ml
Al
Al
R1

Al

Al
R1
AG

Al
AlAl AG

Al

Al
Al
Al
Al

MD(R1D)
MD(R1D)

(MI)(AI)
(A1)

(A2)
(A1)

(MT)

and {a_—bz\fzJ(a +bV2 )=1, so every element of S has an inverse. (A1)

a” —

R1

3

6
1

5

[16]
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15.

16.

(b)  To show that f(x) is an isomorphism, we need to show that it is
injective, surjective and that it preserves the operation.

Injection: Letx; =a + bﬁ,xz =c+ d\/a
FO)=f()=a-bV2 =c—d\2 = (@a—c)+(d-b)V2 =0 (M1)

=a=c,andb=d=x;=x, (A1)
Surjection: For every y =a — b2 thereisx=a+ by/2 (MI)(A1)
Preserves operation:
fxxa) =@+ b2 )+ d2 ) = flac + 2bd + Yad + be) 2 ) (M1)
=ac +2bd —(ad + bc)\2 = (a— b2 )c— d2) (M1)
(f(a+ N2 (e + dN2)) = (F D) ()
(a)
+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
(Al)
(b)
*) | a b c d
a b a d c
b a b c d
c d c a b
d c d b a
(A4)
Notes: There are many other correct solutions, with a different ordering
Award (A4) if all entries are correct,(A3) if all but 1 entry are correct,
(A2) if all but 2 entries are correct,(A1) if all but 3 entries are correct.
(a)
ol f & h j
f1fr g b
glg f J h
hlh j f g
Jjlj h g (A3)
Note: Award (A3) for all correct, (A2) for I error, (A1) for 2 errors, (A0) otherwise.
(b)
|0 1 2 3 xs| 1 2 3 4
ojo0 1 2 3 1|1 2 3 4
1|1 2 3 0 212 4 1 3
212 3 0 1 3103 1 4 2
303 0 1 2 4 14 3 2 1

To investigate isomorphisms we can consider the order of elements M1)
for +4, the identity is 0, 1 has order 4, 2 has order 2 and 3 has order 4, (Al)

for xs, the identity is 1, 2 has order 4, 3 has order 4 and 4 has order 2, (Al)

for °, the identity is £, and g, 4 and j all have order 2. (A1)
Hence +, is isomorphic with xs. (A1)
Corresponding elements are

01,102,243 -3 0R0-1,13,24 32, (A1)

Note: Corresponding elements must be correct for final (Al).

(1]

[8]
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17.

18.

(a)

(b)

(a)

(b)

(c)

(d)

By using the composition of functions we form the Cayley table

- | A Lo fh N
N N Lo B N
Lo 2 A fa S5
£ T £ T S S
N2 S 7 S T S (A3)

Note: For each error in the above table deduct one mark up to a
maximum of three marks.

From the table, we see that (7, -) is a closed and is commutative. (RD)
f1 is the identity. (A1)
£ =fi=1,2,3,4. (A1)

Since the composition of functions is an associative binary operation
an Abelian group. (AG)

The Cayley table for the group (G, Q) is given below:

o | 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1 (A2)

Note: For each error in the entries deduct one mark up to a
maximum of two marks.

Define f: T = G such that (1) = 1, f{if5) =3, () =S and f{if,) =7 M1)
Since distinct elements are mapped onto distinct images, it is a bijection.(R1)

Since the two Cayley tables match, the bijection is an isomorphism. (R1)
Hence the two groups are isomorphic. (AG)
B is the set {1,1, -1, —i} (A1)
This set is closed under multiplication.
Associative, since it is normal complex number multiplication. (RD)
The identity element is 1. (R1)
The inverse of i is —i, and vice versa, 1 and —1 are self inverses. (R1)

x 1131719

1113719

3 (319|117

71711]19]3

919173 ]1 (A2)
Order of 11s 1
Order of 3 is 4, since 3% = 1 (A1)
Order of 7 is 4, since 7* = 1 (A1)
Order of 9 is 2, since 9% = 1 (A1)
The two groups will have a bijection in which the following correspond:
leolL,3eoi,70,and9o -1 (or3 -1, 76 1) (A1)

Both groups have the same structure, the bijection preserves the operation. (R1)

(1]

(1]



19.

(a)

1L,

N B

I

I

1

I

I

|

““““ TR L

|

I

|

!M C
° | U H 14 K
U U H v K
H H U K 4
14 4 K U H
K K 14 H U

(A4)

Note:(A4) for 15-16 correct entries,(A3) for 13-14, (A2) for 11-12, (A1) for 9-10, (40) o/w
Closure: U, H, K and V are the only entries in the table. So it is closed. (A1)

(b)

(c)

Identity: U, since UT=TU =T for all T'in S. (A1)
Inverses: U'=U H'=H,V'=V,K'=K (A1)
Associativity: Given (AG)
Hence (S, -) forms a group. (R1)
Cc={l,-1,i,-i}
0 | 1 -1 i —
1 1 -1 i —i
-1 -1 1 —i i
i i — -1 1
—i —i i 1 -1 (A3)

Note: Award (A3) for 15-16 correct entries, (A2) for 13-14, (A1) for 11-12, (A0) for fewer

(d)

Suppose f/: § — C'is an isomorphism.

Then AU) = 1, the identity in C, since f preserves the group operation.(M1)(C1)
Assume f(H) =1, 1 =U)=fH-H)=fH) ¢ f(H).

(A1)

But f{H) =1, and i is not its own inverse, so fis not an isomorphism. (RD)
Note: Accept other correctly justified solutions.

[15]
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THEORETICAL

[6 marks]

20. Leta '=b (M1)
Thene=b xa=b xa Xa (M1)
sothate=(bxa)xa=exa M1)
and therefore e = a M1)(AG)

Note: There are other correct solutions.
21. (a) IfGisagroupand H is a subgroup of G then the order of H is a
divisor of the order of G. (A2)
(b)  Since the order of G is 24, the order of @ must be
1,2,3,4,6,8,12 or 24 (R2)
The order cannot be 1, 2, 3, 6 or 12 since a?ze (R1)
Also @® # e so that the order of @ must be 24 (RD)
Therefore, a is a generator of GG, which must therefore be cyclic. (R1)
22. (a) A cyclic group is a group which is generated by one of its elements
(or words to that effect). M2)
(b)  We can assume that (G, #) has at least two elements and hence
contains an element, say b, which is different from e, its identity. (R1)
The order of b is equal to the order ¢ of the subgroup it generates. (M1)
By Lagrange’s theorem ¢ must be a factor of p and since p is prime
eitherg=1or g =p. (R1)
Since b # e we see that g # 1 and therefore g = p. (R1)
But if the order of 4 is p then b generates (G, #)
which is therefore cyclic. (RD)
23.
ForaceH . a'*a=ec H so H contains the identity. (41
ForaeH ., a'*e=g"' e H so H contains all the inverse elements, f41)
# |5 assoclative on & and therefore on H. (Al
Fora.beH. a'eH so (a'y'*bh=a*be H so closure confirmed. f4l)(41)
The four requirements are satisfied so (H, *) 15 a subgroup. (R1)

24. Consider a = b. This cannot be a or b since a * b =a = b = e which is not the (M1)
case and similarly for b. So a * b = either e or c. (RD)
If a x b = e, then a,b form an inverse pair so b = a = e. (R1)
Suppose a * b = c. Consider b * a. As before, this cannot equal @ or b and it
cannot equal e either because that would imply that @ «+ b = ¢ which itisnot. (R1)
It follows that b * a = c. (RD)
Thus in both cases, a * b =b * a. (R1)

25. Given (G, *) is a cyclic group with identity e and G # {e} and G has no proper

subgroups.
If G is of composite finite order and is cyclic, then there is x € G such that x

generates G. (R1)
If |G| =p % q,p,q+# 1, then <x> is a subgroup of G of order g which is (M1)
impossible since G has no non-trivial proper subgroup. (R1)
Suppose the order of G is infinite. Then <x*> is a proper subgroup of G which (M1)
contradicts the fact that G has no proper subgroup. (A1)
So G is a finite cyclic group of prime order. (R1)

[4]
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26.

27.

If one of the sets H and K is contained in the other then either H U K = H or

HuUK=K.
In either case it is a subgroup of (G, ). (C2)
Only if:
Conversely, suppose that (H U K, o) is a subgroup of (G, -) and that H
is not contained in K. (M1)
Then there exists an element b of H which is not included in K. (ChH
Let a be any element of K.
Then ab € Hu K (since (H U K, o) is a group). (ChH
If ab € K then b= a 'ab € K which is a contradiction of our hypothesis. (C1)
Hence ab ¢ K and therefore ab ¢ H so thatabb ' € H (CD)
which shows that K < H since a was any element of K. (C1)
Therefore H c K or K C H. (AG)
OR
Proof by contradiction: M1)
K & H then there exists m € K, m ¢ H (C1)
And
H ¢ K then there exists n € H, n ¢ K. (C1)
Suppose mon € Hthenm o n o n"! e His a contradiction (C1)
Suppose mon & Kthenn=m"' «m-n € K is a contradiction (ChH
Hence m - n ¢ HU K a contradiction (ChH
Therefore Hc KorKc H (AG)
(a) Let (G, -)and (H, ®) be two groups. They are said to be isomorphic
if there exists a one-to-one transformation f: G — H which is
surjective (onto) with the (C1)
property that forall x, y € G, f(x - y) =f(x) o f (). (ChH
Note: Some candidates may say that the groups (G, -) and (H, o)
are isomorphic if they have the same Cayley table (or group
table). In that case award (Cl).
(b) Sincef: G = H, f(x) € Hfor some x € G.
Since ¢’ is the identity element in H, (M1)
e’ o flx) = fix) = fix ° e) = fle) » f(x). (MI)(AD)
By the right cancellation law, ¢’ = f{e). (R1)
(¢)  Suppose G = <a>, the cyclic group generated by a, i.e. n is the
smallest positive integer such that a” = e, the identity in G. (C1)
Let f: G — H be an isomorphism. Let la)=b € H.
fa®)=fa° a)=fla) « fla) = (a))”. (M1)
In general fla™) = (f (a))", 1 <m < n. (A1)
By (iii) (b) (fla))" = €', the identity in H. Hence " = ¢’ and
consequently H is a cyclic group of order n with generator b. (R1)

(8]

[10]
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28.

29.

(a)

(b)

(a)

(b)

(c)

Suppose a is of order n and is a ! of order m.

Therefore e = exe = (a )"*a" (M1)
If m>n, thene=(a )" "+(a )'*d" = (a )" "+(a '*a)". (M1)
Hence e = (¢ )™ ™. This implies a ' is of order m —n <m
which is a contradiction. So m is not greater than ». (RD)
Ifm<n,e= (afl)m*am*anfm = (aﬁl*a)m*anfm (M1)
Hence e = a" ™, which implies a is of order n —m < n.
This is a contradiction. (R1)
Therefore m = n. (AG)
Let S(m) be the statement: 5™ = p ' xa™p.
S (1) is true since we are given b =p71*a*p (A1)
Assume S(k) as the induction hypothesis. (M1)
B = bhb = (p e p)r(p asp) = pied ap (MD(RI)
which proves S(k + 1).
Hence, by mathematical induction " =p *a™p (n=1, 2, ...). (AG)
()l =e Order of xy =2 M1)
= ()(xy) =e=>x(x)y=e  Associative property M1)(M1)
= xx(yx)yy = xey Left and right-multiply M1)
= e(yx)e =xy Order of elements given M1)
= yx=xy (AG)
OR
Since x, y and xy are self-inverses, x ' =x, yﬁ1 =y and (xy)’1 =xy (RD(RID)
Consider xy = (xy)f1 (M1)
=y (M1)
=yx M1 (AG)

Let a be any element of a group, whose identity is e.
Let a ! be an inverse of a, and let b be another inverse of a

different from a .

Now, b =be = b(aaﬁl) = (ba)ail; identity and associativity properties, (M1)

then, b=ea ' =a ', which contradicts the assumption that b = a ', M1)
therefore there is only one inverse of @, namely al. (R1)
OR
Let a be any element of a group whose identity is e. Let b and ¢ be
inverses of a, so that ab = ba = e. (M1)
Consider b = b(ac)

= (ba)c

=c M1)
Thus any two inverses are equal, so the inverse is unique. (RD)
If G is Abelian, then fxy) = (x») ' =y x ' =xy T = fix) Ay) and f
is an isomorphism. (MI)(R1)

If f'is an isomorphism, then f{xy) = f(x) f(y), that is,

() =xy =0

Then xy = yx (M1)
and hence G is Abelian. (R1)
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