HAEF IB – FURTHER MATH HL TEST 2

SETS, RELATIONS AND GROUPS

by Christos Nikolaidis

1.

2.

Marks:	/100
	%

Grade:

Nam	e:	
Date	: 8/12/2017	
	Questions	
[Ma	eximum mark: 10J	
The	binary operation * is defined on \mathbb{N} by $a*b=1+ab$.	
Det	ermine whether or not *	
(a)	is closed;	[2 marks]
(b)	is commutative;	[2 marks]
(c)	is associative;	[3 marks]
(d)	has an identity element.	[3 marks]
[Ma	ximum mark: 8]	
	e elements of sets P and Q are taken from the universal set $\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$. $P = \{1, 2, 3\}$ and $Q = \{2, 4, 6, 8, 10\}$.	
(a)	Given that $R = (P \cap Q')'$, list the elements of R .	[3 marks]
(b)	For a set S , let S^* denote the set of all subsets of S ,	
	(i) find P^* ;	
	(ii) find $n(R^*)$.	[5 marks]

3. [Maximum mark: 13]

The function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 2x+1 & \text{for } x \le 2\\ x^2 - 2x + 5 & \text{for } x > 2 \end{cases}.$$

- (a) (i) Sketch the graph of f.
 - (ii) By referring to your graph, show that f is a bijection. [5 marks]
- (b) Find $f^{-1}(x)$. [8 marks]

4. [Maximum mark: 13]

The relation R is defined on $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ by aRb if and only if $a(a+1) \equiv b(b+1) \pmod{5}$.

- (a) Show that R is an equivalence relation. [6 marks]
- (b) Show that the equivalence defining R can be written in the form

$$(a-b)(a+b+1) \equiv 0 \pmod{5}.$$
 [3 marks]

(c) Hence, or otherwise, determine the equivalence classes. [4 marks]

5. [Maximum mark: 10]

- (a) The function g: Z→Z is defined by g(n)=|n|-1 for n∈Z. Show that g is neither surjective nor injective. [2 marks]
- (b) The set S is finite. If the function f:S→S is injective, show that f is surjective. [2 marks]
- (c) Using the set Z⁺ as both domain and codomain, give an example of an injective function that is not surjective. [3 marks]
- (d) Using the set Z⁺ as both domain and codomain, give an example of a surjective function that is not injective. [3 marks]

6. [Maximum mark: 12]

The binary operation Δ is defined on the set $S = \{1, 2, 3, 4, 5\}$ by the following Cayley table.

Δ	1	2	3	4	5
1	1	1	2	3	4
2	1	2	1	2	3
3	2	1	3	1	2
4	3	2	1	4	1
5	4	3	2	1	5

- (a) State whether S is closed under the operation Δ and justify your answer. [2]
- (b) State whether Δ is commutative and justify your answer. [2]
- (c) State whether there is an identity element and justify your answer. [2]
- (d) Determine whether Δ is associative and justify your answer. [3]
- (e) Find the solutions of the equation $a\Delta b = 4\Delta b$, for $a \neq 4$. [3]

7. [Maximum mark: 19]

Consider the set S defined by $S = \{s \in \mathbb{Q} : 2s \in \mathbb{Z}\}\$.

You may assume that + (addition) and \times (multiplication) are associative binary operations on $\mathbb Q$.

- (a) (i) Write down the six smallest non-negative elements of S.
 - (ii) Show that $\{S, +\}$ is a group.
 - (iii) Give a reason why {S, x} is not a group. Justify your answer.[9]
- (b) The relation R is defined on S by $s_1 R s_2$ if $3s_1 + 5s_2 \in \mathbb{Z}$.
 - (i) Show that R is an equivalence relation.
 - (ii) Determine the equivalence classes. [10]

8. [*Maximum mark: 15*]

Sets X and Y are defined by $X =]0,1[; Y = \{0,1,2,3,4,5\}.$

- (a) (i) Sketch the set $X \times Y$ in the Cartesian plane.
 - (ii) Sketch the set $Y \times X$ in the Cartesian plane.

(iii) State
$$(X \times Y) \cap (Y \times X)$$
. [5]

Consider the function $f: X \times Y \to \mathbb{R}$ defined by f(x, y) = x + y and the function $g: X \times Y \to \mathbb{R}$ defined by g(x, y) = xy.

- (b) (i) Find the range of the function f.
 - (ii) Find the range of the function g.
 - (iii) Show that f is an injection.
 - (iv) Find $f^{-1}(\pi)$, expressing your answer in exact form.

(v) Find all solutions to
$$g(x, y) = \frac{1}{2}$$
. [10]