## HAEF IB – FURTHER MATH HL TEST 3

# SETS, GROUPS AND RELATIONS PAPER 1

by Christos Nikolaidis

| P1:/35 | P2:/35 |
|--------|--------|
| Total: | _%     |
| Grade: |        |

| Name: |  |
|-------|--|
|-------|--|

Date: 25/1/2017

#### Questions

- **1.** [Maximum mark: 5]
  - (a) Show by means of a Venn diagram that  $X Y = X \cap Y'$

[1 mark]

(b) Using (a) and set algebra, prove that  $A - (B \cup C) = (A - B) \cap (A - C)$ 

[4 marks]

**2.** [Maximum mark: 7]

Consider the function  $f: R^+ \times R \to R \times R^+$  given by

$$f(x,y) = (\ln x, e^{x+y})$$

(a) Show that f is a bijection

[6 marks]

(b) Find  $f^{-1}$ 

[1 mark]

**3.** [Maximum mark: 8]

Consider the functions  $f: A \to B$  and  $g: B \to C$ . Given that  $g \circ f: A \to C$ 

is a bijection, show that

(a) f is an injection

[3 marks]

(b) g is a surjection

[3 marks]

(c) f and g are not necessarily bijections.

[2 marks]

**4.** [Maximum mark: 15]

Let  $D = R - \{1\}$  and  $f: D \to D$  a function given by

$$f(x) = \frac{x+1}{x-1}$$

(a) Explain why f is a bijection.

[2 marks]

(b) Show that f is self-inverse

[2 marks]

(c) Let T be a relation on D given by

$$xTy$$
 if and only if  $y = f(x)$ 

Determine whether *T* is reflexive, symmetric or transitive.

[5 marks]

(d) Let S be a relation on  $D \times R$  such that

$$(x,y)$$
 S  $(a,b)$  if and only if  $y+f(a)-b=f(x)$ 

- (i) Show that S is an equivalence relation.
- (ii) Describe the equivalence classes of S (i.e. the partition of  $D \times R$ ) [6 marks]

# HAEF IB – FURTHER MATH HL

### TEST 3

### SETS, GROUPS AND RELATIONS

### PAPER 2

by Christos Nikolaidis

| N  | ame:                                                                     |           |
|----|--------------------------------------------------------------------------|-----------|
| D  | ate: 25/1/2017                                                           |           |
|    | Questions                                                                |           |
| 1. | [Maximum mark: 15]                                                       |           |
|    | Consider the binary operation                                            |           |
|    | x * y = 5xy                                                              |           |
|    | on the set of non-zero real numbers $R^*$ .                              |           |
|    | (a) Show that $(R^*,*)$ has an identity element $a$ and state its value. | [2 marks] |
|    | (b) Show that $(R^*,*)$ is an Abelian group.                             | [5 marks] |
|    | Consider also a homomorphism                                             |           |
|    | $f:(R^*,*) \rightarrow (R,+)$                                            |           |
|    | where $(R, +)$ is the standard additive group.                           |           |
|    | (c) Show that $f(a) = 0$ .                                               | [2 marks] |
|    | (d) Given that $f(x) = \ln  k x $ , where k is a positive integer        |           |
|    | (i) find the value $k$ , by using (c)                                    |           |
|    | (ii) confirm that $f$ is a homomorphism;                                 |           |
|    | (iii) explain why $f$ is not an isomorphism;                             |           |
|    | (iv) find the kernel $Ker f$ .                                           |           |
|    | (v) Describe the cosets of <i>Ker f</i>                                  | [6 marks] |

**2.** [Maximum mark: 20]

Consider the multiplicative group  $(Z_7^*, \times_7)$ , where  $Z_7^* = \{1, 2, 3, 4, 5, 6\}$  and  $\times_7$  is the multiplication of integers modulo 7.

(a) Write down the Cayley table of this group.

[4 marks]

(b) Show that  $(Z_7^*, \times_7)$  is cyclic and find its smallest generator.

[3 marks]

Consider also the additive group  $(Z_6, +_6)$ , where  $Z_6 = \{0,1,2,3,4,5\}$  and  $+_6$  is the addition of integers modulo 6.

- (c) If f is a homomorphism from  $(Z_7^*, \times_7)$  to  $(Z_6, +_6)$ , with f(3) = 1
  - (i) Find the value of f(2) by using the fact  $3 \times_7 3 = 2$
  - (ii) Copy and complete the following tables by applying f on the powers of 3

| x    | 1 | 2 | 3 | 4 | 5 | 6 |
|------|---|---|---|---|---|---|
| f(x) | 0 |   | 1 |   |   |   |

[6 marks]

(d) If g is a homomorphism from  $(Z_7^*, \times_7)$  to  $(Z_6, +_6)$ , with g(3) = 2, copy and complete the following table

| x    | 1 | 2 | 3 | 4 | 5 | 6 |
|------|---|---|---|---|---|---|
| g(x) |   |   | 2 |   |   |   |

[4 marks]

[2 marks]

(e) Determine which of the two functions f, g is an isomorphism. Explain.

[1 marks]

(f) Write down the kernel of g.