HAEF IB – FURTHER MATH HL

TEST 3

NUMBER THEORY

by Christos Nikolaidis

Name:		Marks:/90 Grade:	
1. [Ma	aximum mark: 7]		
(a)	Explain why 23!+5 is not a prime number.	[1 mc	arkj
(b)	Find all positive integers n for which $n!+5$ is a prime numbe	r. [3 mar	rks]
(c)	Find 2018 consecutive integers which are not prime.	[3 mar	rks]
2. [Ma	aximum mark: 8]		
Let	a and b be positive integers. Show that		
(a)	If $a + b$ and $2a - b$ are coprime then a and b are coprime.	[2 mar	rks]
(b)	If a and b are coprime then $gcd(a+b,2a-b)$ is either 1 or	3. [4 mar	rks]
(c)	Show by giving examples that both the results in (b) are poss	sible. [2 max	rksj
3. [Ma	aximum mark: 8]		
(a)	Find 2018 ²⁰¹⁸ (mod13)	[4 mar	rks]
(b)	Find the last digit of 2018 ²⁰¹⁸	[4 mar	rks]
4. [ma	eximum mark: 5]		
Sho	w that there are infinitely many primes.		

5. [maximum mark: 7]

Solve analytically the system of congruences

$$x \equiv 1 \pmod{3}$$

$$x \equiv 2 \pmod{4}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 4 \pmod{7}$$

6. [maximum mark: 6]

Solve the difference equation

$$u_{n+1} = 8u_n - 16u_{n-1}$$

$$u_0 = 3$$
, $u_1 = 16$

7. [maximum mark: 5]

Show that an integer *a* is divisible by 3 if the sum of the digits in the expression of *a* in base 7 is divisible by 3.

8. [maximum mark: 12]

Let $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$

(a) Show that

$$a + c \equiv b + d \pmod{m}$$

[2 marks]

$$ac \equiv bd \pmod{m}$$

[4 marks]

(a) Show by using mathematical induction that

$$a^n \equiv b^n \pmod{m}$$
 for any $n \in Z^+$

[6 marks]

9. [maximum mark: 10]

Consider the non-homogeneous difference equation

$$u_{n+2} = 5u_{n+1} - 6u_n + 10$$

$$u_1 = 8$$
, $u_2 = 30$

(a) By letting $V_n = u_n - 5$, find the first 3 terms of the sequence V_n

[2 marks]

(b) Show that

$$V_{n+2} = 5V_{n+1} - 6V_n$$

[2 marks]

(c) Find the general term for V_n and hence for u_n .

[6 marks]

10. [maximum mark: 22]

Consider

$$d_1 = \gcd(88,136)$$

$$d_2 = \gcd(88,137)$$

$$d_3 = \gcd(88,138)$$

(a) Find the prime decomposition of the numbers 88 and 136 and hence write down the values of d_1 and $l_1 = lcm(88,136)$

[4 marks]

(b) Given that $9 \times 137 - 14 \times 88 = 1$, explain why $d_2 = 1$

[2 marks]

(c) Find the value of d_3 by using Euclid's algorithm; **Hence** express d_3 as a linear combination of 88 and 138.

[5 marks]

- (d) Solve each of the following congruences
 - (i) $88x \equiv 2 \pmod{136}$.

[1 mark]

(ii) $88x \equiv 2 \pmod{137}$.

[2 marks]

(iii) $88x \equiv 2 \pmod{138}$.

[4 marks]

(e) Find the general solution of the Diophantine equation

$$88x - 138y = 2$$

[4 marks]