HAEF IB - FURTHER MATH HL

TEST 3

Number Theory

by Christos Nikolaidis

Name:

\qquad

Date: 16-2-2018

Marks: \qquad /90

Grade: \qquad

Questions

1. [Maximum mark: 7]
(a) Explain why $23!+5$ is not a prime number.
(b) Find all positive integers n for which $n!+5$ is a prime number.
(c) Find 2018 consecutive integers which are not prime.
2. [Maximum mark: 8]

Let a and b be positive integers. Show that
(a) If $a+b$ and $2 a-b$ are coprime then a and b are coprime.
(b) If a and b are coprime then $\operatorname{gcd}(a+b, 2 a-b)$ is either 1 or 3 .
(c) Show by giving examples that both the results in (b) are possible.
3. [Maximum mark: 8]
(a) Find $2018^{2018}(\bmod 13)$
[4 marks]
(b) Find the last digit of 2018^{2018}
[4 marks]
4. [maximum mark: 5]

Show that there are infinitely many primes.
5. [maximum mark: 7]

Solve analytically the system of congruences

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 2(\bmod 4) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 4(\bmod 7)
\end{aligned}
$$

6. [maximum mark: 6]

Solve the difference equation

$$
\begin{gathered}
u_{n+1}=8 u_{n}-16 u_{n-1} \\
u_{0}=3, u_{1}=16
\end{gathered}
$$

7. [maximum mark: 5]

Show that an integer a is divisible by 3 if the sum of the digits in the expression of a in base 7 is divisible by 3 .
8. [maximum mark: 12]

Let $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$
(a) Show that

$$
\begin{array}{ll}
a+c \equiv b+d(\bmod m) & {[2 \text { marks }]} \\
a c \equiv b d(\bmod m) & {[4 \text { marks }]}
\end{array}
$$

(a) Show by using mathematical induction that

$$
a^{n} \equiv b^{n}(\bmod m) \text { for any } n \in Z^{+}
$$

[6 marks]
9. [maximum mark: 10]

Consider the non-homogeneous difference equation

$$
\begin{gathered}
u_{n+2}=5 u_{n+1}-6 u_{n}+10 \\
u_{1}=8, \quad u_{2}=30
\end{gathered}
$$

(a) By letting $V_{n}=u_{n}-5$, find the first 3 terms of the sequence V_{n}
(b) Show that

$$
V_{n+2}=5 V_{n+1}-6 V_{n}
$$

(c) Find the general term for V_{n} and hence for u_{n}.
10. [maximum mark: 22]

Consider

$$
\begin{aligned}
& d_{1}=\operatorname{gcd}(88,136) \\
& d_{2}=\operatorname{gcd}(88,137) \\
& d_{3}=\operatorname{gcd}(88,138)
\end{aligned}
$$

(a) Find the prime decomposition of the numbers 88 and 136 and hence write down the values of d_{1} and $l_{1}=l c m(88,136)$
(b) Given that $9 \times 137-14 \times 88=1$, explain why $d_{2}=1$
(c) Find the value of d_{3} by using Euclid's algorithm; Hence express d_{3} as a linear combination of 88 and 138.
(d) Solve each of the following congruences
(i) $88 x \equiv 2(\bmod 136)$. [1 mark]
(ii) $88 x \equiv 2(\bmod 137)$. [2 marks]
(iii) $88 x \equiv 2(\bmod 138)$.
[4 marks]
(e) Find the general solution of the Diophantine equation

$$
88 x-138 y=2 \quad \text { [4 marks] }
$$

