HAEF IB - FURTHER MATH HL
 TEST in Number Theory

by Christos Nikolaidis
SOLUTIONS
26-IV-2017

1. [Maximum mark: 6]

Let a and b be two positive integers. Show that $\operatorname{gcd}(a, b) \times \operatorname{lcm}(a, b)=a b$

Solution

Let p_{1}, \ldots, p_{n} be the set of primes that divide either a or b
Then $a=p_{1}^{\alpha_{2}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}$ and $b=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{n}^{\beta_{n}}$
Hence $a b=p_{1}^{\alpha_{1}+\beta_{1}} p_{2}^{\alpha_{2}+\beta_{2}} \ldots p_{n}^{\alpha_{n}+\beta_{n}}$
Furthermore $\min \left\{\alpha_{j}, \beta_{j}\right\}+\max \left\{\alpha_{j}, \beta_{j}\right\}=\alpha_{j}+\beta_{j}$ for $j=1,2, \ldots, n$
Hence $a b=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}+\max \left\{\alpha_{1}, \beta_{1}\right\}} \ldots p_{n}^{\min \left\{\alpha_{n}, \beta_{n}\right\}+\max \left\{\alpha_{n}, \beta_{n}\right\}}$ A1
$a b=\operatorname{gcd}(a, b) \times \operatorname{lcm}(a, b)$
2. [Maximum mark: 12]
(a) Show that if 3 divides $\left(a^{2}+b^{2}\right)$ then 3 divides a and 3 divides b, where $a, b \in Z^{+}$.
(b) Show that if p is a prime number and p divides a and p divides $\left(a^{2}+b^{2}\right)$ then p divides b, where $a, b, p \in Z^{+}$.
(c) The greatest common divisor of x and y is denoted by (x, y).

Show that if a and b are relatively prime, then $(a, b c)=(a, c)$. where $a, b, c \in \mathbb{Z}$.

Solution

(a) Either $3 / a$ or 3 ka (for either a or b).

In the second case either $a=1 \bmod 3$ or $a=2 \bmod 3$ (and the same for b), and in both cases it follows that $a^{2}=1 \bmod 3$ and $b^{2}=1 \bmod 3$, hence $a^{2}+b^{2}=1 \bmod 3$ (when one of them is divisible by 3) or $a^{2}+b^{2}=2 \bmod 3$ which contradicts the bypothesis. Therefore the result follows.
(b) If $p \mid a$ then $p \mid a^{2}$ and since $p \mid a^{2}+b^{2}$ then $p \mid\left(a^{2}+b^{2}-a^{2}\right)$

So, $p \mid b^{2}$. Since p is prime, p must divide b.
(c) If $(a, b)=1, \Rightarrow$ there are two integers s and r such that: $r a+s b=1$,

If $(a, c)=d . \Rightarrow$ there are two integers p and q such that: $p a+q c=d$.
Then $p a+q c(r a+s b)=d$, and hence $(p+q c r) a+(q s)(b c)=d$ and hence the result follows.
3. [Maximum mark: 11]
(a) The sum of the digits of a three-digit number of the form $a b b$ is divisible by 7 . Show that the number itself is divisible by 7 .
(b) Use Euclid's algorithm to find the smallest positive integers x and y that satisfy the equation $57 x-13 y=7$.

Solution

(a) The sum of the digits is divisible by $7 \Rightarrow a+2 b=0 \bmod 7$

$$
\begin{align*}
a b b & =100 a+10 b+b \\
& =100 a+11 b \bmod 7 \tag{M1}\\
& =2 a+4 b \bmod 7 \\
& \equiv 2(a+2 b) \equiv 0 \bmod 7
\end{align*}
$$

therefore $a b b$ is divisible by 7 .
(b) gcd $(57,13)=1$ and we are going to apply Euclid's algorithm.

$$
\left.\left.\begin{array}{r}
57=13 \times 4+5 \\
13=5 \times 2+3 \\
5=3 \times 1+2 \\
3=2 \times 1+1
\end{array}\right\} \Rightarrow \begin{array}{l}
a=b \times 4+r_{1} \\
b=r_{1} \times 2+r_{2} \\
r_{1}=r_{2} \times 1+r_{3} \\
r_{2}=r_{3} \times 1+r_{4}
\end{array}\right\} \Rightarrow \begin{aligned}
& r_{1}=a-4 b \\
& r_{2}=b-2 r_{1}=9 b-2 a \\
& r_{3}=r_{1}-r_{2}=3 a-13 b \\
& r_{4}=r_{2}-r_{3}=22 b-5 a
\end{aligned}
$$

Since $r_{4}=1$ we can find the particular solution.

$$
-5 a+22 b=1 \Rightarrow-35 a+154 b=7 \Rightarrow 37 \times(-35)-13 \times(-154)=7
$$

So the particular solution is $(-35,-154)$.
Now the general solutions are given by the formula
$\left\{\begin{array}{l}x=-35+13 p \\ y=-154+57 p\end{array}, p \in Z\right.$
For $p=3$ we get the smallest positive integers that are $x=4$ and $y=17$.
4. [Maximum mark: 6]

Show that the product of four consecutive integers is divisible by 24 .
Solution
Three consecutive numbers are $\equiv 0 \bmod 3, \equiv 1 \bmod 3, \equiv 2 \bmod 3$.
Thus one of them is divisible by 3 and their product is divisible by 3
Four consecutive numbers are $\equiv 0 \bmod 4, \equiv 1 \bmod 4, \equiv 2 \bmod 4, \equiv 3 \bmod 4$.
Thus one of them is divisible by 4 and another one by 2 . So their product is
divisible by 8
Therefore, the product is divisible by $3 \times 8=24$.
5. [Maximum mark: 5]

Show that $n^{4}+4$ is not a prime for any $n>1$, by using the binomial expansion of $(a+b)^{2}$
Solution

$$
n^{4}+4=\left(n^{2}+2\right)^{2}-4 n^{2}=\left(n^{2}+2+2 n\right)\left(n^{2}+2-2 n\right)
$$

Both factors are greater than 1 since
$\left(n^{2}+2+2 n\right)=(n+1)^{2}+1>1$
$\left(n^{2}+2-2 n\right)=(n-1)^{2}+1>1$, since $n>1$.
6. [maximum mark: 6]
(a) Find the last digit of the number 2^{2017}
(b) Find $3^{1000} \bmod 7$ by using Fermat's little theorem.

Solution

(a) We can start from $2^{10}=1024 \equiv 4 \bmod 10$
$2^{100} \equiv 4^{10} \equiv 6 \bmod 10$
$2^{1000} \equiv 6^{10} \equiv 6 \bmod 10$
$2^{2000} \equiv 6^{2} \equiv 6 \bmod 10$
$2^{2017} \equiv 6 \times 2^{17} \equiv 2 \mathrm{mod10}$, so the last digit is 2
(b) $3^{6} \equiv 1 \bmod 7$ by Fermat's little theorem.
$3^{6 \times 166}=3^{996} \equiv 1 \bmod 7$
$3^{1000}=3^{4} \equiv 4 \bmod 7$
7. [maximum mark: 6]

Solve $\quad 88 x \equiv 1 \bmod 137$
Solution
Euclidean algorithm gives $\operatorname{gdc}(88,137)=1$ and $1=9 \times 137-14 \times 88$
The solution is $x \equiv-14 \bmod 137=123 \bmod 137$
8. [maximum mark: 10]

Solve

$$
\begin{aligned}
& x \equiv 1 \bmod 2 \\
& x \equiv 2 \bmod 3 \\
& x \equiv 3 \bmod 5
\end{aligned}
$$

(a) By the method of the proof of the Chinese remainder theorem.
(b) By setting $x=2 k+1$ and similar substitutions.

Solution

The final answer is $x \equiv 23 \bmod 30$
9. [maximum mark: 4]
(a) Explain why the following system does not satisfy the conditions of the Chinese remainder theorem

$$
\begin{aligned}
& x \equiv 5 \bmod 6 \\
& x \equiv 4 \bmod 5 \\
& x \equiv 3 \bmod 4 \\
& x \equiv 2 \bmod 3
\end{aligned}
$$

(b) Show that it reduces to a system that satisfies these conditions.
(Do not solve the system)

Solution

(a) 6,5,4,3 are not coprime
(b) $x \equiv 5 \bmod 6$ is equivalent to $x \equiv 2 \bmod 3$ and $x \equiv 1 \bmod 2$ and $x \equiv 3 \bmod 4$ implies $x \equiv 1 \bmod 2$
Thus the last 3 equations are enough.
10. [maximum mark: 7]
(a) Show that any integral power of 10 leaves a remainder of 1 when divided by 3 .

It is given that any number $y \in \mathbb{N}$ can be written in expanded form as

$$
y=a_{n} 10^{n}+a_{n-1} 10^{n-1} \ldots+a_{1} 10+a_{0}
$$

(b) Show that $y=3 k+$ sum of digits of y, for some $k \in \mathbb{N}$.
[3 marks]
(c) Show that 3 divides y if 3 divides the sum of digits of y.

Solution

a) Since $10=9+1$
then $10^{n}=\sum_{0}^{n}\binom{n}{t} 9^{n-t}=9^{n}+n \times 9^{n-1}+\cdots+9+1=3 Q+1 . Q \in \mathbf{N}$
(M1)(R1)

Note: Some students may use mathematical induction, please award (C3).
[3 marks]
b) $y=a_{n}\left(3 k_{n}+1\right)+a_{n-1}\left(3 k_{n-1}+1\right)+\cdots+a_{1}(3 \times 3+1)+a_{0}$
(M1)
$=3\left(a_{n} k_{n}+a_{n-1} k_{n-1}+\cdots+a_{1} \times 3\right)+a_{n}+a_{n-1}+\cdots+a_{1}+a_{0}$ $=3 k+a_{n}+a_{n-1}+\cdots a_{1}+a_{0}$
(R1)
c) If $3 \mid\left(a_{n}+a_{n-1}+\cdots+a_{1}+a_{0}\right)$ then $3 \mid 3 k+\left(a_{n}+a_{n-1}+\cdots+a_{1}+a_{0}\right)$ and the result follows.
11. [maximum mark: 5]

The population of a village is 1100 people. Show that there are at least 4 people who share the same birthday.

Solution

Suppose that at most 3 people share the same birthday. So there are at most $3 \times 366=1098$ people, contradiction
12. [maximum mark: 6]
(a) If $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ are prime numbers of the form $4 m+3$, show that

$$
s=4 p_{1} p_{2} p_{3} \cdots p_{n}-1
$$

has a prime divisor of the form $4 m+3$.
(b) Show that there are infinitely many prime numbers of the form $4 m+3$.

Solution

(a) Notice that s is in fact of the form $4 m+3$

A prime number (when divided by 4) is either of the form $4 m+1$ or $4 m+3$. Suppose that all prime divisors of s have the form $4 m+1$. But the product of two numbers of the form $4 m+1$ is also of the same form, since

$$
\left(4 m_{1}+1\right)\left(4 m_{2}+1\right)=4 m_{1}\left(4 m_{2}+1\right)+4 m_{2}+1=4\left(4 m_{1} m_{2}+m_{1}+m_{2}\right)+1
$$

Thus s is also of the form $4 m+1$, contradiction.
(b) Suppose that there are only n numbers of this form, namely $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ Then one of them, say p_{k} divides $s=4 p_{1} p_{2} p_{3} \cdots p_{n}-1$ (by (a)). Thus p_{k} divides 1 as well (contradiction).
13. [maximum mark: 6]

Show that for any prime number p such that $n<p<2 n$

$$
\text { (a) }\binom{2 n}{n} \equiv 0 \bmod p . \quad \text { (b) }\binom{2 n}{n} \not \equiv 0 \bmod p^{2}
$$

Solution
(a)

$$
\begin{aligned}
&\binom{2 n}{n}=\frac{(2 n)!}{n!n!}=\frac{(n+1)(n+2) \cdots(2 n)}{1 \cdot 2 \cdot 3 \cdots n} \\
& \Rightarrow 1 \cdot 2 \cdot 3 \cdots n\binom{2 n}{n}=(n+1)(n+2) \cdots(2 n)
\end{aligned}
$$

Clearly p divides the RHS, thus it divides the LHS. But p is coprime with $1 \cdot 2 \cdot 3 \cdots n$, so it divides $\binom{2 n}{n}$
(b) If p^{2} divides $\binom{2 n}{n}$, then p^{2} also divides $(n+1)(n+2) \cdots(2 n)$

But this is impossible since p is one of the factors and $p^{2}>2 n$
14. [maximum mark: 10]

A sequence is defined recursively by

$$
\begin{array}{ll}
\text { the first term } & u_{1}=10 \\
\text { and the recursive relation } & u_{n+1}=2 u_{n}+2
\end{array}
$$

(a) Given that the general solution is given by the formula $u_{n}=a(2)^{n}+b$, show that $a=6$ and $b=-2$
(b) Prove by mathematical induction that $u_{n}=6(2)^{n}-2$, for $n \in \mathbb{Z}^{+}$

Solution

(a) $u_{1}=10$ and $u_{2}=22$

Hence
$10=2 a+b$
$22=4 a+b$
Therefore
$a=6$ and $b=-2$
(b) Notice that the induction step is
$u_{k+1}=2 u_{k}+2=2\left(6 \times 2^{k}-2\right)+2=6 \times 2^{k+1}-4+2=6 \times 2^{k+1}-2$

