HAEF IB - FURTHER MATH HL

TEST 4

Number Theory

by Christos Nikolaidis

Name: \qquad
Date: 26-IV-2017

Marks: \qquad $/ 100$

Grade: \qquad

Questions

1. [Maximum mark: 6]

Let a and b be two positive integers. Show that $\operatorname{gcd}(a, b) \times \operatorname{lcm}(a, b)=a b$
2. [Maximum mark: 12]
(a) Show that if 3 divides $\left(a^{2}+b^{2}\right)$ then 3 divides a and 3 divides b. where $a, b \in \mathbb{Z}^{+}$.
(b) Show that if p is a prime number and p divides a and p divides $\left(a^{2}+b^{2}\right)$
then p divides b, where $a, b, p \in \mathbb{Z}^{+}$.
(c) The greatest common divisor of x and y is denoted by (x, y).

Show that if a and b are relatively prime, then $(a, b c)=(a, c)$, where $a, b, c \in \mathbb{Z}$.
3. [Maximum mark: 11]
(a) The sum of the digits of a three-digit number of the form $a b b$ is divisible by 7 . Show that the number itself is divisible by 7 .
(b) Use Euclid's algorithm to find the smallest positive integers x and y that satisfy the equation $57 x-13 y=7$.
4. [Maximum mark: 6]

Show that the product of four consecutive integers is divisible by 24.
5. [Maximum mark: 5]

Show that $n^{4}+4$ is not a prime for any $n>1$, by using the binomial expansion of $(a+b)^{2}$
6. [maximum mark: 6]
(a) Find the last digit of the number 2^{2017}
(b) Find $3^{1000} \bmod 7$ by using Fermat's little theorem.
7. [maximum mark: 6]

Solve $\quad 88 x \equiv 1 \bmod 137$
8. [maximum mark: 10]

Solve

$$
\begin{aligned}
& x \equiv 1 \bmod 2 \\
& x \equiv 2 \bmod 3 \\
& x \equiv 3 \bmod 5
\end{aligned}
$$

(a) By the method of the proof of the Chinese remainder theorem.
(b) By setting $x=2 k+1$ and similar substitutions.
9. [maximum mark: 4]
(a) Explain why the following system does not satisfy the conditions of the Chinese remainder theorem

$$
\begin{aligned}
& x \equiv 5 \bmod 6 \\
& x \equiv 4 \bmod 5 \\
& x \equiv 3 \bmod 4 \\
& x \equiv 2 \bmod 3
\end{aligned}
$$

(b) Show that it reduces to a system that satisfies these conditions.
(Do not solve the system)
10. [maximum mark: 7]
(a) Show that any integral power of 10 leaves a remainder of 1 when divided by 3 .

It is given that any number $y \in \mathbb{N}$ can be written in expanded form as

$$
y=a_{n} 10^{n}+a_{n-1} 10^{n-1} \ldots+a_{1} 10+a_{0}
$$

(b) Show that $y=3 k+$ sum of digits of y, for some $k \in \mathbb{N}$.
(c) Show that 3 divides y if 3 divides the sum of digits of y.
11. [maximum mark: 5]

The population of a village is 1100 people. Show that there are at least 4 people who share the same birthday.
12. [maximum mark: 6]
(a) If $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ are prime numbers of the form $4 m+3$, show that

$$
s=4 p_{1} p_{2} p_{3} \cdots p_{n}-1
$$

has a prime divisor of the form $4 m+3$.
(b) Show that there are infinitely many prime numbers of the form $4 m+3$.
13. [maximum mark: 6]

Show that for any prime number p such that $n<p<2 n$
(a) $\binom{2 n}{n} \equiv 0 \bmod p$.
(b) $\binom{2 n}{n} \not \equiv 0 \bmod p^{2}$
14. [maximum mark: 10]

A sequence is defined recursively by

$$
\begin{array}{ll}
\text { the first term } & u_{1}=10 \\
\text { and the recursive relation } & u_{n+1}=2 u_{n}+2
\end{array}
$$

(a) Given that the general solution is given by the formula $u_{n}=a(2)^{n}+b$, show that $a=6$ and $b=-2$
(b) Prove by mathematical induction that $u_{n}=6(2)^{n}-2$, for $n \in \mathbb{Z}^{+}$

