HAEF IB – FURTHER MATH HL

TEST 4

NUMBER THEORY

by Christos Nikolaidis

Name:			Marks:/100
Da	ate:	26-IV-2017	Grade:
		Questions	
1.	-	ximum mark: 6] and b be two positive integers. Show that $gcd(a,b) \times lcm(a,b) =$	ab
2.	[Ma:	ximum mark: 12]	
	(a)	Show that if 3 divides $(a^2 + b^2)$ then 3 divides a and 3 divides a , $b \in \mathbb{Z}^+$.	des b , [5 marks]
	(b)	Show that if p is a prime number and p divides a and p divides then p divides b , where a , b , $p \in \mathbb{Z}^+$.	$des (a^2 + b^2)$ [3 marks]
	(c)	The greatest common divisor of x and y is denoted by (x, b) . Show that if a and b are relatively prime, then $(a, bc) = (a + b)$, $c \in \mathbb{Z}^{+}$.	
	(a) T	ximum mark: 11] The sum of the digits of a three-digit number of the form a ivisible by 7. Show that the number itself is divisible by 7.	abb is [4 marks]
	. ,	Use Euclid's algorithm to find the smallest positive integers x and satisfy the equation $57x - 13y = 7$.	and y [7 marks]
4.	[Ma:	ximum mark: 6]	
	Shov	w that the product of four consecutive integers is divisible by	24.
5.	[Maximum mark: 5] Show that $n^4 + 4$ is not a prime for any $n > 1$, by using the binomial expansion of $(a+b)^2$		

- **6.** [maximum mark: 6]
 - (a) Find the last digit of the number 2^{2017}
 - (b) Find 3¹⁰⁰⁰ mod 7 by using Fermat's little theorem.
- **7.** [maximum mark: 6]

Solve $88x \equiv 1 \mod 137$

8. [maximum mark: 10]

Solve

 $x \equiv 1 \mod 2$

 $x \equiv 2 \mod 3$

 $x \equiv 3 \mod 5$

- (a) By the method of the proof of the Chinese remainder theorem.
- (b) By setting x = 2k + 1 and similar substitutions.
- **9.** [maximum mark: 4]
 - (a) Explain why the following system does not satisfy the conditions of the Chinese remainder theorem

 $x \equiv 5 \mod 6$

 $x \equiv 4 \mod 5$

 $x \equiv 3 \mod 4$

 $x \equiv 2 \mod 3$

(b) Show that it reduces to a system that satisfies these conditions.

(Do not solve the system)

- **10.** [maximum mark: 7]
 - (a) Show that any integral power of 10 leaves a remainder of 1 when divided by 3.

[3 marks]

It is given that any number $y \in \mathbb{N}$ can be written in expanded form as

$$y = a_n 10^n + a_{n-1} 10^{n-1} \dots + a_1 10 + a_0$$

- (b) Show that y = 3k + sum of digits of y, for some $k \in \mathbb{N}$. [3 marks]
- (c) Show that 3 divides y if 3 divides the sum of digits of y. [1 mark]
- **11.** [maximum mark: 5]

The population of a village is 1100 people. Show that there are at least 4 people who share the same birthday.

12. [maximum mark: 6]

(a) If $p_1, p_2, p_3, ..., p_n$ are prime numbers of the form 4m + 3, show that

$$s = 4p_1p_2p_3\cdots p_n - 1$$

has a prime divisor of the form 4m+3.

(b) Show that there are infinitely many prime numbers of the form 4m + 3.

13. [maximum mark: 6]

Show that for any prime number p such that n

(a)
$$\binom{2n}{n} \equiv 0 \mod p$$
. (b) $\binom{2n}{n} \not\equiv 0 \mod p^2$

14. [maximum mark: 10]

A sequence is defined recursively by

the first term
$$u_1 = 10$$

$$u_{n+1} = 2u_n + 2$$

(a) Given that the general solution is given by the formula $u_n = a(2)^n + b$, show that a = 6 and b = -2

(b) Prove by mathematical induction that $u_n = 6(2)^n - 2$, for $n \in \mathbb{Z}^+$