CONIC SECTIONS

CIRCLE $\quad x^{2}+y^{2}=a^{2} \quad\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=a^{2}$
Tangent at $\left(x_{1}, y_{1}\right) \quad x x_{1}+y y_{1}=a^{2} \quad\left(x-x_{0}\right)\left(x_{1}-x_{0}\right)+\left(y-y_{0}\right)\left(y_{1}-y_{0}\right)=a^{2}$

ELLIPSE $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$
$\begin{aligned} & \text { Tangent } \\ & \text { at }\left(x_{1}, y_{1}\right)\end{aligned} \quad \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1 \quad \frac{\left(x-x_{0}\right)\left(x,-x_{0}^{1}\right)}{a^{2}}+\frac{\left(y-y_{0}\right)\left(y_{1}-y_{0}\right)}{b^{2}}=1$
HYPERBOLA $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \frac{\left(x-x_{0}\right)^{2}}{a^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$
$\underset{\text { at }}{\text { Tangent }}\left(x, y_{1}\right) \quad \frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1 \quad$ (Similarly)

PARABOLA $\quad y^{2}=4 a x \quad\left(y-y_{0}\right)^{2}=4 a\left(x-x_{0}\right)$
Tangent

$$
\text { at }\left(x_{1}, y_{1}\right) \quad y y_{1}=2 a\left(x+x_{1}\right) \quad\left(y-y_{0}\right)\left(y_{1}-y_{0}\right)=2 a\left(x+x_{1}-2 x_{0}\right)
$$

Notice:

- $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$ is also a hyperbola
- $x^{2}=4 a y$ is also a parabola
- If $a=b$ in hyperbola: $x^{2}-y^{2}=a^{2} \begin{gathered}\text { rectangular } \\ \text { hyperbola }\end{gathered}$
A. FOCUS -DIRECTRIX DEFINITIONS


Locus of points where $\frac{d_{P F}}{d_{P l}}=e>0$. (e constant)
If $e=1$, (i.e. $\quad d_{P, F}=d_{P e}$ ) PARABOLA
If $e<1$ (i.e. $d_{P F}<d_{p l}$ ) GLIPSE
If $e>1$ (i.e $d_{P F}>d_{P l}$ ) HYPERBOLA
$e$ is called ECCENTRICITY

Notice
When $e \rightarrow 0$ then Locus $\rightarrow$ Point F (focus)
when $e \rightarrow+\infty$ then Locus $\rightarrow$ LINE $e$ (directrix)
B. STANDARD FORMS OF CONIC SECTIONS

The circle $x^{2}+y^{2}=a^{2}$
CENTER: $O(0,0)$
Locus of points $P(x, y)$ s.t $\quad d_{P O}=a$ (constant)


$$
\sqrt{(x-0)^{2}+(y-0)^{2}}=a \Rightarrow x^{2}+y^{2}=a^{2}
$$

Notice: For a different $C \in N T \in R \quad C\left(x_{0}, y_{0}\right)$ Either locus of $P(x, y)$ s.t $d_{P C}=a$ OR translation of $x^{2}+y^{2}=a$ by $\binom{x_{0}}{y_{0}}$
The parabola $y^{2}=4 a x$
Focus $F(a, 0)$
DIRECTRIX $\quad \ell: x=-a$

Locus of $P(x, y)$ st.


$$
\begin{aligned}
d_{P F}=d_{P e} & \Rightarrow \sqrt{(x-a)^{2}+y^{2}}=x+a \\
& \Rightarrow(x-a)^{2}+y^{2}=(x+a)^{2} \\
& \Rightarrow x^{2}-2 a x+a^{2}+y^{2}=x^{2}+2 a x+a^{2} \\
& \Rightarrow y^{2}=4 a x
\end{aligned}
$$

- The ellipse $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

METHOD A:
Focus $F(h, o)$ DIRECTRIX $l: x=k$

Locus of points $P(x, y)$ s.t. $\frac{d_{P F}}{\dot{d}_{P e}}=e<1$


METHOD B:
Two Fol $F^{\prime}(-h, 0)$ and $F(h, 0)$ Locus of points $P(x, y)$ s.t.

$$
d_{P F}+d_{P F^{\prime}}=2 a \quad \text { (constant sums) }
$$



Both methods result to an equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { with } \begin{array}{ll}
x \text {-intercepts } & x= \pm a \\
y \text {-intercepts } & y= \pm b
\end{array}
$$

- The Hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

METHOD A:
Focus $F(h, 0)$ DIRECTRIX $\quad \ell: x=k$

Locus of points $P(x, y)$ s.t. $\frac{d_{\text {PF }}}{d_{P e}}=e>1$


METHOD B:
Two FoOl $F^{\prime}(-h, 0)$ and $F(h, 0)$
Locus of points $P(x, y)$ s.t
$\left|d_{P F}-d_{P F i}\right|=2 a \quad$ (constant difference)


Both methods result to an equation:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ with $x$-intercepts $x= \pm a$
C. RELATIONS BETWEEN FOCI AND DIRECTRIX


$$
h^{2}+b^{2}=a^{2}, \quad e=\frac{h}{a}
$$

HYPERBOLA


$$
a^{2}+b^{2}=h^{2}
$$

$$
e=\frac{h}{a}
$$

D. EXAMPLE OF AN ELLIPSE


METHOD $A$ : Given two foci $F(3,0), F^{\prime}(-3,0)$ Find the locus of the points $P(x, y) s . t$.

$$
d_{P F}+d_{P F^{\prime}}=10 \quad(a=5 \Rightarrow 2 a=10)
$$

We obtain

$$
\begin{equation*}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \tag{1}
\end{equation*}
$$

Let $\sqrt{(x+3)^{2}+y^{2}}-\sqrt{(x-3)^{2}+y^{2}}=A$
(conjugate)
Then

$$
\begin{aligned}
& \text { (1) } x \text { (2): }\left[(x+3)^{2}+y^{2}\right]-\left[(x-3)^{2}+y^{2}\right]=10 A \\
& \Rightarrow(x+3)^{2}-(x-3)^{2}=10 A \\
& \\
& \Rightarrow 12 x=10 A \Rightarrow A=\frac{6 x}{5} \\
& \begin{aligned}
&(1)+(2): 2 \sqrt{(x+3)^{2}+y^{2}}=10+A \Rightarrow 2 \sqrt{x^{2}+6 x+9+y^{2}}=10+\frac{6 x}{5} \\
& \Rightarrow \sqrt{x^{2}+y^{2}+6 x+9}=5+\frac{3 x}{5} \\
& \Rightarrow x^{2}+y^{2}+6 x+9=25+6 x+\frac{9 x^{2}}{25} \\
& \Rightarrow 25 x^{2}+25 y^{2}+150 x+225=625+150 x+9 x^{2} \\
& \Rightarrow 16 x^{2}+25 y^{2}=400 \Rightarrow \frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{aligned}
\end{aligned}
$$

METHOD $B$ : Given Focus $F(3,0)$, Directrix $\ell: x=\frac{25}{3}$ Eccentricity $e=\frac{3}{5}<1$
Find the locus of the points $P(x, y)$ sit.

$$
\frac{d_{P F}}{d_{P l}}=\frac{3}{5}
$$

We obtain:

$$
\begin{aligned}
& \frac{\sqrt{(x-3)^{2}+y^{2}}}{\frac{25}{3}-x}=\frac{3}{5} \Rightarrow \sqrt{x^{2}-6 x+9+y^{2}}=5-\frac{3 x}{5} \\
& \Rightarrow x^{2}+y^{2}-6 x+9=25-6 x+\frac{9 x^{2}}{25} \\
& \Rightarrow x^{2}+y^{2}=16+\frac{9 x^{2}}{25} \\
& \Rightarrow 25 x^{2}+25 y^{2}=400+9 x^{2} \\
& \Rightarrow 16 x^{2}+25 y^{2}=400 \\
& \Rightarrow \frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{aligned}
$$

Notice

- Given $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad$ (ie. $a=5, b=4$ )
we can find foci; $h^{2}=a^{2}-b^{2} \Rightarrow h=3 \quad F(3,0) \quad F^{\prime}(-3,0)$
eccentricity: $e=\frac{h}{a}=\frac{3}{5} \quad$ directrix $\quad x=\frac{a}{e}=\frac{25}{3}$
- Given focus $F(3,0)$, directrix $x=\frac{25}{3}$ and $e=\frac{3}{5}$ we can find $a, b ; \quad h=a e \Rightarrow a=5 \quad b^{2}=a^{2}-h^{2}=16 \Rightarrow b=4$ Thus $\frac{x^{2}}{s^{2}}+\frac{y^{2}}{4^{2}}=1$
E. GENERAL FORM: $a x^{2}+b y^{2}+c x+d y+e=0$

If $a \neq 0, b \neq 0$
We can wmplete squares for $x$ and $y$ :

$$
a\left(x-x_{0}\right)^{2}+b\left(y-y_{0}\right)^{2}=F
$$

Let $F \neq 0$

- If $a=b$ CIRCLE (or empty Set)
- If $a b>0$ ELLIPSE (or EMpty Set.)
- If $a b<0$ HYPERBOLA

NOTICE: If $\mathrm{F}=0$ we obtain a POINT or Two lines e.g. $(x-1)^{2}+(y-2)^{2}=0 \Rightarrow(x, y)=(1,2)$

$$
(x-1)^{2}-(y-2)^{2}=0 \Rightarrow y=x+1 \text { or } y=-x+3
$$

If $a=0, b \neq 0$
We can complete square for $y$

$$
\left(y-y_{0}\right)^{2}=-\frac{c}{b} x+F
$$

- If $c \neq 0 \quad$ Parabola $\left(y-y_{0}\right)^{2}=A\left(x-x_{0}\right)$
- If $c=0$ empty set or one line or two lines

Notice: If $a \neq 0, b=0$ similar results obtained.

EXAMPLES
1.

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-4 y+4=0 \\
& \Rightarrow(x-1)^{2}+(y-2)^{2}=1 \quad \text { CIRCLE }
\end{aligned}
$$

2. 

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-4 y+5=0 \\
& \Rightarrow(x-1)^{2}+(y-2)^{2}=0 \quad \text { POINT }(x, y)=(1,2)
\end{aligned}
$$

3. 

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-4 y+6=0 \\
& \Rightarrow(x-1)^{2}+(y-2)^{2}=-1 \quad \text { EMPTY } S \in T
\end{aligned}
$$

4. 

$$
\begin{aligned}
& x^{2}+2 y^{2}-2 x-4 y+2=0 \\
& \Rightarrow(x-1)^{2}+2(y-1)^{2}=1 \quad \text { ELLIPSE }
\end{aligned}
$$

5. 

$$
\begin{aligned}
& x^{2}+2 y^{2}-2 x-4 y+3=0 \\
& \Rightarrow(x-1)^{2}+2(y-1)^{2}=0 \quad \text { POINT } \quad(x, y)=(1,1)
\end{aligned}
$$

6. 

$$
\begin{aligned}
& x^{2}+2 y^{2}-2 x-4 y+4=0 \\
& \left.\Rightarrow(x-1)^{2}+2 \lg -1\right)^{2}=-1 \quad \text { EMPTY } S \in T
\end{aligned}
$$

7. 

$$
\begin{aligned}
& x^{2}-2 y^{2}-2 x+4 y-2=0 \\
& \Rightarrow(x-1)^{2}-2(y-1)^{2}=1 \quad \text { HYPERBOLA }
\end{aligned}
$$

8. 

$$
\begin{aligned}
& x^{2}-y^{2}-2 x+4 y-3=0 \\
& \Rightarrow(x-1)^{2}-(y-2)^{2}=0 \Rightarrow y-2= \pm(x-1) \text { TWO LINES }
\end{aligned}
$$

9. 

$$
\begin{aligned}
& y^{2}-4 x-2 y+9=0 \\
& \Rightarrow(y-1)^{2}=4(x-2) \quad \text { PARABOLA }
\end{aligned}
$$

F. MORE GENERAL FORM: $a x^{2}+2 b x y+c y^{2}+d x+e y+f=0$

The extra term is 2bxy $a x^{2}+2 b x y+c y^{2}$ is equal to $(x y)\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)\binom{x}{y}$
Our wish is to eliminate the xy-ferm: $a^{\prime} x^{2}+c^{\prime} y^{2}$ which wresponds to $(x-y)\left(\begin{array}{ll}a^{\prime} & 0 \\ 0 & c^{\prime}\end{array}\right)\binom{x}{y}$ That is, to diagonalise

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \rightarrow\left(\begin{array}{ll}
a^{\prime} & 0 \\
0 & c^{\prime}
\end{array}\right)
$$

in an appropriate way.
LEMMA
If $P=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ with $a^{2}+b^{2}=1$ then $P^{2}=P^{-1}$ (easy to verify)
It can be shown that for $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ we can find $P^{-1} A P=D$ (diagomalisation) where $P$ is as above Thus $P^{T} A P=D$
Then we we the transformation

$$
\binom{x}{y}=P\binom{x^{\prime}}{y^{\prime}} \quad\left(\text { in } \operatorname{lact}\binom{x^{\prime}}{y^{\prime}}=P^{\top}\binom{x}{y}\right)
$$

But $\binom{x}{y}=P\binom{x^{\prime}}{y^{\prime}} \stackrel{\top}{\Rightarrow}\left(\begin{array}{ll}x & y\end{array}\right)=\left(x^{\prime} y^{\prime}\right) P^{\top}$
Then

$$
\begin{aligned}
a x^{2}+2 b x y+c y^{2} & =\left(\begin{array}{ll}
x & y
\end{array}\right) A\binom{x}{y} \\
& =\left(x^{\prime} y^{\prime}\right) P^{\top} A P\binom{x^{\prime}}{y^{\prime}} \\
& =\left(x^{\prime} y^{\prime}\right) D\binom{x^{\prime}}{y^{\prime}} \\
& =\left(x^{\prime} y^{\prime}\right)\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)\left(x^{\prime} y^{\prime}\right) \\
& \Rightarrow \lambda_{1} x^{\prime 2}+\lambda_{x} y^{\prime 2}
\end{aligned}
$$

Notice

- When you find the first eigenvector $\binom{m}{n}$. it is certain that the second eigenvector. can be $\binom{-n}{m}$
Just wrmalise them, ie multiply by $\frac{1}{\sqrt{1 m^{2}+n^{2}}}$ Then $P=\left(\begin{array}{cc}m^{\prime} & -n^{\prime} \\ n^{\prime} & m^{\prime}\end{array}\right)$ satisfies $P^{\top}=P^{-1}$
- Since $m^{\prime 2}+n^{\prime 2}=1$ $P=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ for some $\theta$ ie it is a rotation.

EXAMPLE

$$
\begin{aligned}
& 5 x^{2}+4 x y+5 y^{2}=21 \\
& A=\left(\begin{array}{ll}
5 & 2 \\
2 & 5
\end{array}\right) \quad \operatorname{det}
\end{aligned}
$$

Eigenvalues: $\left|\begin{array}{cc}5-1 & 2 \\ 2 & 5-1\end{array}\right|=0 \Leftrightarrow 1^{2}-101+21=0 \Leftrightarrow 1_{1}=7,1_{2}=3$

For $\left.\lambda=3 \quad \begin{array}{l}2 x+2 y=0 \\ 2 x+2 y=0\end{array}\right\} \Rightarrow x=-y \rightarrow\binom{x}{-x}=\binom{-1}{1} x$
We normalise the columns by dividing by

$$
\begin{aligned}
& \sqrt{1^{2}+1^{2}}=\sqrt{2} \\
& P=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \quad\binom{x}{y}=P\binom{x^{\prime}}{y^{\prime}}=\binom{\frac{1}{\sqrt{2}} x^{\prime}-\frac{1}{\sqrt{2}} y^{\prime}}{\frac{1}{\sqrt{2}} x^{\prime}+\frac{1}{\sqrt{2}} y^{\prime}}
\end{aligned}
$$

$$
\text { i.e. } \begin{aligned}
x & =\frac{1}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right) \\
y & =\frac{1}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)
\end{aligned}
$$

The original relation becomes

$$
\begin{aligned}
& 5 \frac{1}{2}\left(x^{\prime}-y^{\prime}\right)^{2}+4 \frac{1}{2}\left(x^{\prime}-y^{\prime}\right)\left(x^{\prime}+y^{\prime}\right)+5 \frac{1}{2}\left(x^{\prime}+y^{\prime}\right)^{2}=21 \\
& \Leftrightarrow \frac{5}{2}\left(x^{\prime 2}-2 x^{\prime} y^{\prime}+y^{\prime 2}\right)+2\left(x^{\prime 2}-y^{\prime 2}\right)+\frac{5}{2}\left(x^{\prime 2}+2 x^{\prime} y^{\prime}+y^{\prime 2}\right)=21 \\
& \Leftrightarrow 7 x^{\prime 2}+3 y^{\prime 2}=21 \Leftrightarrow \frac{\left(x^{\prime}\right)^{2}}{3}+\frac{\left(y^{\prime}\right)^{2}}{7}=1
\end{aligned}
$$

We can also find the rotation we applied
The transformation matrix is

$$
P^{-1}=P^{\top}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

So $D=45^{\circ}$
Therefore if we apply an anticlockwise rotation of $45^{\circ} \mathrm{in}$ the original relation we obtain the ellispe $\frac{x^{2}}{3}+\frac{y^{2}}{7^{2}}=1$

EXAMPLE

$$
5 x^{2}+4 x y+5 y^{2}-\sqrt{2} x-13 \sqrt{2} y=2
$$

The same transformation as above

$$
\begin{aligned}
& x=\frac{1}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right) \\
& y=\frac{1}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right) \text { gives }
\end{aligned}
$$

$5 x^{2}+4 x y+5 y^{2} \rightarrow 7 x^{\prime 2}+3 y^{\prime 2}$ (as above)
$-\sqrt{2} x-13 \sqrt{2} y \rightarrow-i \sqrt{2} \frac{1}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right)-13 \sqrt{2} \frac{1}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)=-K 12 x^{\prime}-12 y^{\prime}$
Thus

$$
7 x^{\prime 2}+3 y^{\prime 2}-14 x^{\prime}-12 y^{\prime}=2
$$

The new equation

$$
7 x^{2}+3 y^{2}-14 x-12 y=2
$$

represents an ellipse; Complete squares:

$$
\begin{aligned}
& 7\left(x^{2}-2 x+1\right)-7+3\left(y^{2}-4 y+4\right)-12=2 . \\
& 7(x-1)^{2}+3(y-2)^{2}=21 \\
& \frac{(x-1)^{2}}{3}+\frac{(y-2)}{7}=21 \quad \text { center }(1,2) .
\end{aligned}
$$

Question: What is the center of the original ellipse ?

$$
\binom{1}{2}=P^{\top}\binom{x}{y} \Rightarrow\binom{x}{y}=P\binom{1}{2}=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\binom{1}{2}=\binom{-1 / \sqrt{2}}{3 / \sqrt{2}}
$$

Thus the center was $(-1 / \sqrt{2}, 3 / \sqrt{2})$

