CONIC SECTIONS

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

$$\frac{\times \times_1}{a^2} + \frac{yy_1}{b^2} = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

$$\frac{\times \times 1}{a^2} - \frac{yy_1}{b^2} = 1$$

NOTICE:

•
$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$
 is also a hyperbola

A. FOCUS - DIRECTRIX DEFINITIONS

e is called ECCENTRICITY

NOTICE

When e >> 0 then LOCUS -> POINT F (focus)
When e >> +00 then LOCUS -> LINE & (directrix)

B. STANDARD FORMS. OF CONIC SECTIONS

THE CIRCLE X2+42=02

$$\left| \times^2 + y^2 = a^2 \right|$$

CENTER: 0/0,0)

Locus of points P(x,4)

s.t dpo =a (constant)

V(x-0)2+(y-0)2 = a => x2+y2=a2

NOTICE FOR a different CENTER C(xo, yo)

EITHER COCUS OF P(x,y) s.t dpc=a or translation of x2+y2=a by (x0)

THE PARABOLA y = 4ax

Focus Fla,0)

DIRECTRIX l: X=-a

l:x=-a

Locus of P(x,y) st.

$$d_{PF} = d_{PP} \Rightarrow \sqrt{(x-\alpha)^2 + y^2} = x + \alpha$$

$$\Rightarrow (x-\alpha)^2 + y^2 = (x+\alpha)^2$$

$$\Rightarrow x^2 - 2\alpha x + \alpha^2 + y^2 = x^2 + 2\alpha x + \alpha^2$$

$$\Rightarrow y^2 = 4\alpha x$$

THE ELLIPSE
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

HETHOD A:

Focus F(h,o)

DIRECTRIX C: X=K

Locus of points P(x,y)
s.t. dpf = e < 1

METHOD B:

Two Foci F'(-h,o) and F(h,o)

Locus of points P(x,y) s.t.

dpf + dpf' = 2a (constant sum)

Both methods result to an equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 with x-intercepts $x = \pm a$
y-intercepts $y = \pm b$

$$\sqrt{\frac{x^2}{a^2} - \frac{y^2}{b^2}} = \bot$$

HETHOD A:

Focus F(h, 0)

DIRECTRIX l: x=k

Locus of points P(x,y)

s.t. dpe = e>1

HETHOD B:

Two Foci F'fh, 0) and F(h, 0)

Locus of points P(x,y) s.t

| dpF - dpF = 2a (constant difference)

Both methods result to an equation:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 with x-intercepts $x = \pm a$

C. RELATIONS BETWEEN FOCI AND DIRECTRIX

HYPERBOLA

D. EXAMPLE OF AN ELLIPSE

HETHOD A: Given two foci
$$F(3,0)$$
, $F'(-3,0)$
Find the locus of the points $P(x,y)$ s.t.
 $d_{PF}+d_{PF'}=10$ $(\alpha=5\Rightarrow 2\alpha=10)$

We obtain

$$\sqrt{(x+3)^2+y^2} + \sqrt{(x-3)^2+y^2} = 10 \quad \text{(1)}$$
Let $\sqrt{(x+3)^2+y^2} - \sqrt{(x-3)^2+y^2} = A \quad \text{(2)}$
(conjugate)

Then

$$Q + Q = 2\sqrt{(x+3)^2 + y^2} = 10 + A \Rightarrow 2\sqrt{x^2 + 6x + 9 + y^2} = 10 + \frac{6x}{5}$$

$$\Rightarrow \sqrt{x^2 + y^2 + 6x + 9} = .5 + \frac{3x}{5}$$

$$\Rightarrow \sqrt{x^2 + y^2 + 6x + 9} = 2.5 + 6x + \frac{9x^2}{2.5}$$

$$\Rightarrow 25x^2 + 25y^2 + 150x + 225 = 625 + 150x + 9x^2$$

$$\Rightarrow 16x^2 + 25y^2 = 400 \Rightarrow \frac{x^2}{2.5} + \frac{y^2}{16} = 1$$

 $\frac{\text{HETHOD B}}{\text{Eccentricity }}$: Given Focus F(3,0), Directrix $\ell: x = \frac{2s}{3}$

Find the locus of the points P(x,y) s.t. $\frac{dpF}{dpe} = \frac{3}{5}$

We obtain:

$$\frac{\sqrt{(x-3)^2 + y^2}}{\frac{25}{3} - x} = \frac{3}{5} \Rightarrow \sqrt{x^2 - 6x + 9 + y^2} = 5 - \frac{3x}{5}$$

$$\Rightarrow x^2 + y^2 - 6x + 9 = 25 - 6x + \frac{9x^2}{25}$$

$$\Rightarrow x^2 + y^2 = 16 + \frac{9x^2}{25}$$

$$\Rightarrow 25x^2 + 25y^2 = 400 + 9x^2$$

$$\Rightarrow 16x^2 + 25y^2 = 400$$

$$\Rightarrow \frac{x^2}{25} + \frac{y^2}{16} = 1$$

NOTICE

• Given
$$\frac{x^2}{2s} + \frac{y^2}{16} = 1$$
 (i.e. $a = s$, $b = 4$)

we can find foci; $h^2 = a^2 - b^2 \Rightarrow h = 3$ $F(3,0)$ $F'(-3,0)$

eccentricity: $e = \frac{h}{a} = \frac{3}{s}$ directrix $x = \frac{a}{e} = \frac{2s}{3}$

• Given focus $F(3,0)$, directrix $x = \frac{2s}{3}$ and $e = \frac{3}{s}$

we can find a,b : $h = ae \Rightarrow a = s$ $b^2 = a^2 - h^2 = 16 \Rightarrow b = 4$

Thus $\frac{x^2}{5^2} + \frac{y^2}{4^2} = 1$

E. GENERAL FORM: ax2+by2+cx+dy+e=0

▶ Il a≠0,b≠0

We can complete squares for x and y: $a(x-x_0)^2 + b(y-y_0)^2 = F$

Let F.≠O

- · If a=b CIRCLE (OF EMPTY SET)
- · If ab>O <u>ELLIPSE</u> (or EMPTY SET.)
- · If abou HYPERBOLA

NOTICE: If F=0 we obtain a <u>POINT</u> or <u>TWO LINES</u>

e.g. $(x-1)^2 + (y-2)^2 = 0 \Rightarrow (x,y) = (1,2)$ $(x-1)^2 - (y-2)^2 = 0 \Rightarrow y = x+1 \text{ or } y = -x+3$

► If a=0, b≠0

We can complete square for y $(y-y_0)^2 = -\frac{c}{b} \times +F$

- · If C = O PARABOLA (y-y)= A(x-x0)
- · If C=O EMPTY SET OF ONE LINE OF TWO LINES

NOTICE: Il a +0, b=0 similar results obtained.

EXAMPLES

1.
$$x^2 + y^2 - 2x - 4y + 4 = 0$$

 $\Rightarrow (x-1)^2 + (y-2)^2 = 1$ CIRCLE

2.
$$x^2+y^2-2x-4y+5=0$$

=> $(x-1)^2+(y-2)^2=0$ POINT $(x,y)=(1,2)$

3.
$$x^2+y^2-2x-4y+6=0$$

=) $(x-1)^2+(y-2)^2=-1$ EMPTY SET

A.
$$x^2 + 2y^2 - 2x - 4y + 2 = 0$$

 $\Rightarrow (x - 1)^2 + 2(y - 1)^2 = 1$ ELLIPSE

5.
$$x^2 + 2y^2 - 2x - 4y + 3 = 0$$

 $\Rightarrow (x-1)^2 + 2(y-1)^2 = 0$ POINT $(x,y) = (1,1)$

6.
$$x^2 + 2y^2 - 2x - 4y + 4 = 0$$

=) $(x-1)^2 + 2(y-1)^2 = -1$ EHPTY SET

7.
$$x^2 - 2y^2 - 2x + 4y - 2 = 0$$

 $\Rightarrow (x - 1)^2 - 2(y - 1)^2 = 1$ HYPERBOLA

9.
$$y^2 - 4x - 2y + 9 = 0$$

=> $(y - 1)^2 = 4(x - 2)$ PARABOLA

The extra term is 2bxy ax2+2bxy+cy2 +1s equal to (xy)(ab)(x) Our wish is to eliminate the xy-term: a'x2+c'y2 which corresponds to (xy)(ocky) That is, to diagonalise (a b) -> (a'o) in an appropriate way. If $P = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ with $a^2b^2 = 1$ then $P^T = P^{-1}$ (easy to verify) It can be shown that her A = (a b) we can find P'AP=D (diagonalisation) Where P is as above Thus PTAP=D Then we use the transformation $\begin{pmatrix} z \\ y \end{pmatrix} = P \begin{pmatrix} z' \\ y' \end{pmatrix} \quad \left(\text{in fact } \begin{pmatrix} z' \\ y' \end{pmatrix} = P^{\top} \begin{pmatrix} z \\ y \end{pmatrix} \right)$

But
$$\begin{pmatrix} x \\ y \end{pmatrix} = P\begin{pmatrix} x' \\ y' \end{pmatrix} \stackrel{\text{\tiny T}}{\Rightarrow} (x y) = (x' y') P^{\text{\tiny T}}$$

Then

$$ax^{2}+2bxy+cy^{2}=(xy)A(x)$$

$$=(x'y')P^{T}AP(x')$$

$$=(x'y')D(x')$$

$$=(x'y')(x')$$

$$=(x'y')(x')$$

$$=(x'y')(x')$$

$$=(x'y')(x')$$

$$=(x'y')(x')$$

$$=(x'y')(x')$$

Notice

- When you find the first eigenvector $\binom{n}{n}$.

 It is certain that the second eigenvector, can be $\binom{-n}{n}$.

 Tust wrutalise them, i.e wulltply by $\sqrt{\frac{1}{\sqrt{n^2+n^2}}}$.

 Then $P = \binom{n'}{n'} \cdot \binom{n'}{n'}$ satisfies $P^T = P^{-1}$
- P= (cosd -sind) for some of i.e it is a rotation.

EXAMPLE

$$5x^{2} + 4xy + 5y^{2} = 21$$

$$A = \begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix} \quad det$$

For
$$J=f$$
 $-2x+2y=0$ $f=y=x \Rightarrow \begin{pmatrix} x \\ x \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} x$

For
$$J=3$$
 $\partial x + 2y = 0$ $\int = x = -y \Rightarrow \begin{pmatrix} x \\ -x \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} x$

We normalise the columns by dividing by $V_{12+12} = \sqrt{2}$

$$P = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \qquad \begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}x' - \frac{1}{\sqrt{2}}y' \\ \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y' \end{pmatrix}$$

1.e.
$$x = \frac{1}{12}(x'-y')$$

 $y = \frac{1}{12}(x'+y')$

The original relation becomes

$$5 \frac{1}{8} (x'-y')^{2} + 4 \frac{1}{8} (x'-y')(x'+y') + 5 \frac{1}{8} (x'+y')^{\frac{2}{8}} = 21$$

$$\Leftrightarrow \frac{5}{8} (x'^{2} - 2x'y' + y'^{2}) + 2(x'^{2} - y'^{2}) + \frac{5}{8} (x'^{2} + 2x'y' + y'^{2}) = 21$$

$$\Leftrightarrow 7x'^{2} + 3y'^{2} = 21 \Leftrightarrow \frac{(x')^{2} + (y')^{2}}{3} + \frac{(y')^{2}}{4} = 1$$

We can also find the rotation we applied

The transformation matrix is

$$P^{-1} = P^{T} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \omega_{1} \vartheta & \sin \vartheta \\ -\sin \vartheta & \omega_{2} \vartheta \end{pmatrix}$$

So 0=45°

Therefore if we apply an anticlockwise rotation of 45° in the original relation we obtain the ellipse $\frac{x^2}{3} + \frac{y^2}{4} = 1$

EXAMPLE

The same transformation as above

$$x = \sqrt{2}(x'-y')$$

$$y = \sqrt{2}(x'+y')$$
gives

 $5x^{2}+4xy+5y^{2} \rightarrow 7x'^{2}+3y'^{2}$ (a) above) $-52x-1352y \rightarrow -352\frac{1}{12}(x'-y')-1352\frac{1}{12}(x'+y')=-14x'-12y'$ Thus

The new equation $7x^{2}+3y^{2}-14x-12y=2$ represents an ellipse; Complete squares: $7(x^{2}-2x+1)-7+3(y^{2}-4y+4)-12=2.$ $7(x-1)^{2}+3(y-2)^{2}=21$ $\frac{(x-1)^{2}}{3}+\frac{(y-2)}{7}=21$ center (1,2).

Question: What is the center of the original ellipse?

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} = P^{\mathsf{T}} \begin{pmatrix} \chi \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} \chi \\ y \end{pmatrix} = P \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 3/12 \end{pmatrix}$$

Thus the center was (-1/12, 3/12)