SOLUTIONS

1.	if, for $m(3k)$ $\Rightarrow 1$ $2m - m = 1$	2 and $5k + 3$, $k \in \mathbb{Z}$ are relatively prime or all k , there exist $m, n \in \mathbb{Z}$ such that $(x + 2) + n(5k + 3) = 1$ (3m + 5n = 0) (3m + 3n = 1) (5, n = -3) e they are relatively prime	R1M1A1 A1 A1 A1 AG	[6]
2.	(a)	EITHER		
		$3 \mid m \implies m \equiv 0 \pmod{3}$	(R1)	
		if this is false then $m \equiv 1$ or 2 (mod 3) and $m^2 \equiv 1$ or 4 (mod 3)	R1A1	
		since $4 \equiv 1 \pmod{3}$ then $m^2 \equiv 1 \pmod{3}$	A1	
		similarly $n^2 \equiv 1 \pmod{3}$	A1	
		hence $m^2 + n^2 \equiv 2 \pmod{3}$		
		but $m^2 + n^2 \equiv 0 \pmod{3}$	(R1)	
		this is a contradiction so $3 \mid m$ and $3 \mid n$	R1AG	
		OR		
		$m \equiv 0, 1 \text{ or } 2 \pmod{3} \text{ and } n = 0, 1 \text{ or } 2 \pmod{3}$	M1R1	
		$\Rightarrow m^2 \equiv 0 \text{ or } 1 \pmod{3} \text{ and } n^2 \equiv 0 \text{ or } 1 \pmod{3}$	A1A1	
		so $m^2 + n^2 \equiv 0, 1, 2 \pmod{3}$	A1	
		but $3 m^2 + n^2$, so $m^2 + n^2 \equiv 0 \pmod{3}$	R1	
		$m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$	R1	
		\Rightarrow 3 m and 3 n	AG	
	(b)	suppose $\sqrt{2} = a$ where $a, b \in \mathbb{Z}$ and a and b are consime	М1	
	(b)	suppose $\sqrt{2} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and a and b are coprime	M1	
		then $2b^2 = a^2$	A1	
		$a^2 + b^2 = 3b^2$	A1	
		$3b^2 \equiv 0 \pmod{3}$	A1	
		but by (a) a and b have a common factor so $\sqrt{2} \neq \frac{a}{b}$	R1	

AG

 $\Rightarrow \sqrt{2}$ is irrational

[12]

3. $457128 = 2 \times 228564$ (a)

$$228\ 564 = 2 \times 114\ 282$$

$$114\ 282 = 2 \times 57141$$

$$57141 = 3 \times 19047$$

$$19.047 = 3 \times 6349$$

$$6349 = 7 \times 907$$

M1M1

trial division by 11, 13, 17, 19, 23 and 29 shows that 907 is prime

therefore
$$457128 = 2^3 \times 3^2 \times 7 \times 907$$

we require the least integer such that $2^{2^n} \ge 10^{10^6}$ (b) taking logs twice gives

$$2^n \ln 2 \ge 10^6 \ln 10$$

$$n \ln 2 \ge \ln \left(\frac{10^6 \ln 10}{\ln 2} \right)$$

$$= 6 \ln 10 + \ln \ln 10 - \ln \ln 2$$

$$n \ge 21.7$$

least n is 22

by a corollary to Fermat's Last Theorem

$$5^{11} \equiv 5 \pmod{11}$$
 and $17^{11} \equiv 17 \pmod{11}$

 $5^{11} + 17^{11} \equiv 5 + 17 \equiv 0 \pmod{11}$

- this combined with the evenness of LHS implies $25 \mid 5^{11} + 17^{11}$
- R1AG

[12]

any clearly indicated method of dividing 1189 by successive numbers 4. M1 find that 1189 has factors 29 and/or 41 A2 it follows that 1189 is not a prime number **A**1

Note: If no method is indicated, award A1 for the factors and A1 for

the conclusion.

every positive integer, greater than 1, is either prime or can be (b) (i) expressed uniquely as a product of primes A1A1

Note: Award A1 for "product of primes" and A1 for "uniquely".

(ii) **METHOD 1**

let M and N be expressed as a product of primes as follows

$$M = AB$$
 and $N = \hat{A}C$ M1A1

where A denotes the factors that are common and B, C the disjoint factors that are not common

it follows that
$$G = A$$
 A1

and
$$L = GBC$$

from these equations, it follows that

$$GL = A \times ABC = MN$$
 AG

METHOD 2

Let
$$M = 2^{x_1} \times 3^{x_2} \times ... p_n^{x_n}$$
 and $N = 2^{y_1} \times 3^{y_2} \times ... p_n^{y_n}$ where p_n

denotes the
$$n^{\text{th}}$$
 prime M1

Then
$$G = 2^{\min(x_1, y_1)} \times 3^{\min(x_2, y_2)} \times ... p_n^{\min(x_n, y_n)}$$
 A1

and
$$L = 2^{\max(x_1, y_1)} \times 3^{\max(x_2, y_2)} \times ... p_n^{\max(x_n, y_n)}$$
 A1

It follows that
$$GL = 2^{x_1} \times 2^{y_1} \times 3^{x_2} \times 3^{y_2} \times ... \times p_n^{x_n} \times p_n^{y_n}$$
 A1
$$= MN$$
 AG

AG

5. (a)
$$14641$$
 (base $a > 6$) = $a^4 + 4a^3 + 6a^2 + 4a + 1$, M1A1
= $(a + 1)^4$ A1

this is the fourth power of an integer AG

(b) (i)
$$aRa \text{ since } \frac{a}{a} = 1 = 2^0, \text{ hence } R \text{ is reflexive}$$

$$aRb \implies \frac{a}{b} = 2^k \implies \frac{b}{a} = 2^{-k} \implies bRa$$

so R is symmetric **A**1

$$aRb$$
 and $bRc \Rightarrow \frac{a}{b} = 2^m, m \in \mathbb{Z}$ and $bRc \Rightarrow \frac{b}{c} = 2^n, n \in \mathbb{Z}$ M1

$$\Rightarrow \frac{a}{b} \times \frac{b}{c} = \frac{a}{c} = 2^{m+n}, m+n \in \mathbb{Z}$$
 A1

$$\Rightarrow aRc$$
 so transitive

hence R is an equivalence relation AG

Note: Award A2 if one class missing,

A1 if two classes missing,

A0 if three or more classes missing.

[11]

[10]

6. (a)
$$N = a_n \times 2^n + a_{n-1} \times 2^{n-1} + ... + a_1 \times 2 + a_0$$
 M1

If $a_0 = 0$, then N is even because all the terms are even.

Now consider

$$a_0 = N - \sum_{r=1}^n a_r \times 2^r$$
 M1

If N is even, then a_0 is the difference of two even numbers and is therefore even.

R1

R1

It must be zero since that is the only even digit in binary arithmetic. R1

(b)
$$N = a_n \times 3^n + a_{n-1} \times 3^{n-1} + ... + a_1 \times 3 + a_0$$

 $= a_n \times (3^n - 1) + a_{n-1} \times (3^{n-1} - 1) + ... + a_1 \times (3 - 1) + a_n$
 $+ a_{n-1} + ... + a_1 + a_0$ M1A1

Since 3^n is odd for all $n \in \mathbb{Z}^+$, it follows that $3^n - 1$ is even.

Therefore if the sum of the digits is even, *N* is the sum of even numbers and is even.

R1
Now consider

$$a_n + a_{n-1} + \dots + a_1 + a_0 = N - \sum_{r=1}^n a_r (3^r - 1)$$
 M1

If N is even, then the sum of the digits is the difference of even numbers and is therefore even.

[11]

7. consider the following

n	$(n^2+2n+3) \pmod{8}$
1	6
2	3
3	2
4	3
5	6
6	3
7	2
8	3

M1A2

we see that the only possible values so far are 2, 3 and 6 R1 also, the table suggests that these values repeat themselves but we have to prove this

let
$$f(n) = n^2 + 2n + 3$$
, consider

$$f(n+4) - f(n) = (n+4)^2 + 2(n+4) + 3 - n^2 - 2n - 3$$

$$= 8n + 24$$
M1
A1

since 8n + 24 is divisible by 8,

$$f(n+4) = f(n) \pmod{8}$$

this confirms that the values do repeat every 4 values of n so that 2, 3 and 6 are the only values taken for all values of n

[9]

8. (a)
$$a = \lambda c + 1$$
 M1
so $ab = \lambda bc + b \implies ab \equiv b \pmod{c}$ A1 AG

(b) the result is true for
$$n = 0$$
 since $9^0 = 1 \equiv 1 \pmod{4}$ A1 assume the result is true for $n = k$, i.e. $9^k \equiv 1 \pmod{4}$ M1 consider $9^{k+1} = 9 \times 9^k$ M1

$$\equiv 9 \times 1 \pmod{4} \text{ or } 1 \times 9^k \pmod{4}$$

$$= 1 \pmod{4}$$

$$\equiv 1 \pmod{4}$$

so true for $n = k \implies$ true for n = k + 1 and since true for n = 0 result follows by induction

Note: Do not award the final R1 unless both M1 marks have been awarded.

Note: Award the final R1 if candidates state n = 1 rather than n = 0

(c) let
$$M = (a_n a_{n-1} ... a_0)_9$$
 (M1)
= $a \times 9^n + a_{n-1} \times 9^{n-1} + ... + a_0 \times 9^0$

EITHER

$$\equiv a_n \pmod{4} + a_{n-1} \pmod{4} + \dots + a_0 \pmod{4}$$

$$\equiv \sum a_i \pmod{4}$$
So M is divisible by 4 if $\sum a_i$ is divisible by 4
$$AG$$

OR

$$= a_n(9^n - 1) + a_{n-1}(9^{n-1} - 1) + \dots + a_1(9^1 - 1) + a_n + a_{n-1} + \dots + a_1 + a_0$$
 A1

Since
$$9^n \equiv 1 \pmod{4}$$
, it follows that $9^n - 1$ is divisible by 4, R1 so *M* is divisible by 4 if $\sum a_i$ is divisible by 4

[12]

9.
$$67^{101} \equiv 2^{101} \pmod{65}$$
 A1
 $2^6 \equiv -1 \pmod{65}$ (M1)
 $2^{101} \equiv (2^6)^{16} \times 2^5$ A1
 $\equiv (-1)^{16} \times 32 \pmod{65}$ A1
 $\equiv 32 \pmod{65}$ A1
 \therefore remainder is 32 A1 N2

[6]

10. EITHER

we work modulo 3 throughout the values of a , b , c , d can only be 0, 1, 2 since there are 4 variables but only 3 possible values, at least 2 of the variables must be equal (mod 3) therefore at least 1 of the differences must be 0 (mod 3) the product is therefore 0 (mod 3)	R2 R2 R2 R1AG	
OR		
we attempt to find values for the differences that do not give 0 (mod 3) for the product we work modulo 3 throughout		
we note first that none of the differences can be zero	R1	
a - b can therefore only be 1 or 2	R1	
suppose it is 1, then $b-c$ can only be 1		
since if it is 2, $(a - b) + (b - c) \equiv 3 \equiv 0 \pmod{3}$	R1	
c-d cannot now be 1 because if it is		
$(a-b) + (b-c) + (c-d) = a - d \equiv 3 \equiv 0 \pmod{3}$	R1	
c - d cannot now be 2 because if it is	D.1	
$(b-c) + (c-d) = b-d \equiv 3 \equiv 0 \pmod{3}$	R1	
we cannot therefore find values of c and d to give the required result	R1	
a similar argument holds if we suppose $a - b$ is 2, in which case $b - c$ must		
be 2 and we cannot find a value of $c - d$	R1	
the product is therefore 0 (mod 3)	AG	
		[7]

11. (a) Let
$$p_1, ..., p_n$$
 be the set of primes that divide either a or b M1

Then $a = p_1^{\alpha_2} p_2^{\alpha_2} ... p_n^{\alpha_n}$ and $b = p_1^{\beta_1} p_2^{\beta_2} ... p_n^{\beta_n}$ A1A1

Hence $ab = p_1^{\alpha_1 + \beta_1} p_2^{\alpha_2 + \beta_2} ... p_n^{\alpha_n + \beta_n}$ A1

Furthermore $\min \{\alpha_j, \beta_j\} + \max \{\alpha_j, \beta_j\} = \alpha_j + \beta_j \text{ for } j = 1, 2, ..., n$ A1

Hence $ab = p_1^{\min \{\alpha_1, \beta_1\} + \max \{\alpha_1, \beta_1\}} ... p_n^{\min \{\alpha_n, \beta_n\} + \max \{\alpha_n, \beta_n\}}$ A1

 $ab = \gcd(a,b) \times \operatorname{lcm}(a,b)$ AG

(b)
$$\gcd(a,b) \mid a \text{ and } \gcd(a,b) \mid b$$
 A1

Hence $\gcd(a,b) \mid a+b$ A1

so that $\gcd(a,b) \mid \gcd(a,a+b)$ * A1

Also $\gcd(a,a+b) \mid a \text{ and } \gcd(a,b) \mid a+b$ A1

Hence $\gcd(a,a+b) \mid b$ A1

so that $\gcd(a,a+b) \mid b$ A1

From * and **: $\gcd(a,b) = \gcd(a,a+b)$ A1

A1AG

[13]

12. (a)
$$10201 = a \times 8^4 + b \times 8^3 + c \times 8^2 + d \times 8 + e$$
 M1
 $= 4096a + 512b + 64c + 8d + e \Rightarrow a = 2$ A1
 $= 10201 - 2 \times 4096 = 2009 = 512b + 64c + 8d + e \Rightarrow b = 3$
 $2009 - 3 \times 512 = 473 = 64c + 8d + e \Rightarrow c = 7$
 $473 - 7 \times 64 = 25 = 8d + e \Rightarrow d = 3 \text{ and } e = 1$
 $10201 = 23731 \text{ (base 8)}$ A2 N2

(b)
$$8^n \equiv 1 \pmod{7}$$
 for positive integer n Consider the octal number $u_n u_{n-1} ... u_1 u_0 = u_n + u_{n-1} + u_1 + u_0 \pmod{7}$ (M1) from which it follows that an octal number is divisible by 7 if and only if A1 the sum if the digits is divisible by 7. R1 Hence $10201 \equiv a + b + c + d + e \pmod{7}$

(c)
$$10201 \equiv 2 + 3 + 7 + 3 + 1 \equiv 2 \pmod{7}$$
 A2

- 13. (a) let $N = a_n a_{n-1} ... a_1 a_0 = a_n \times 9^n + a_{n-1} \times 9^{n-1} + ... + a_1 \times 9 + a_0$ M1A1 all terms except the last are divisible by 3 and so therefore is their sum R1 it follows that N is divisible by 3 if a_0 is divisible by 3
 - (b) EITHER

consider N in the form

$$N = a_n \times (9^n - 1) + a_{n-1} \times (9^{n-1} - 1) + \dots + a_1(9 - 1) + \sum_{i=0}^n a_i$$
 M1A1

all terms except the last are even so therefore is their sum

R1

it follows that
$$N$$
 is even if $\sum_{i=0}^{n} a_i$ is even AG

OR

working modulo 2,
$$9^k \equiv 1 \pmod{2}$$

hence $N = a_n a_{n-1} ... a_1 a_0 = a_n \times 9^n + a_{n-1} \times 9^{n-1} + ... + a_1 \times 9 + a_0$

$$\equiv \sum_{i=0}^{n} a_i \pmod{2}$$
 R1

it follows that *N* is even if
$$\sum_{i=0}^{n} a_i$$
 is even AG

(c) the number is divisible by 3 because the least significant digit is 3 it is divisible by 2 because the sum of the digits is 44, which is even dividing the number by 2 gives (232430286)₉, M1A1 which is even because the sum of the digits is 30 which is even R1 N is therefore divisible by a further 2 and is therefore divisible by 12 R1

Note: Accept alternative valid solutions

[12]

14. (a)
$$x \equiv y \pmod{n} \Rightarrow x = y + kn, (k \in \mathbb{Z})$$

(b)
$$x \equiv y \pmod{n}$$

$$\Rightarrow x = y + kn$$

$$x^2 = y^2 + 2kny + k^2n^2$$

$$\Rightarrow x^2 = y^2 + (2ky + k^2n) n$$

$$\Rightarrow x^2 \equiv y^2 \pmod{n}$$
M1A1
$$\Rightarrow x^2 \equiv y^2 \pmod{n}$$
AG

(c) EITHER

$$x^{2} \equiv y^{2} \pmod{n}$$

$$\Rightarrow x^{2} - y^{2} = 0 \pmod{n}$$

$$\Rightarrow (x - y)(x + y) = 0 \pmod{n}$$
A1
This will be the case if
$$x + y = 0 \pmod{n} \text{ or } x = -y \pmod{n}$$

$$\text{R1}$$

$$\text{So } x \neq y \pmod{n} \text{ in general}$$
R1
OR

Any counter example, e.g. n = 5, x = 3, y = 2, in which case

 $x^2 \equiv y^2 \pmod{n}$ but $x \not\equiv y \pmod{n}$.

[9]

R2

(false) R1R1

15. (a) consider the decimal number
$$A = a_n a_{n-1}, ... a_0$$
 M1
 $A = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_1 \times 10 + a_0$ M1
 $= a_n \times (10^n - 1) + a_{n-1} \times (10^{n-1} - 1) + ... + a_1 \times (10 - 1)$
 $+ a_n + a_{n-1} + ... + a_0$ M1A1
 $= a_n \times 99...9$ ($n \text{ digits}$) $+ a_{n-1} \times 99...9$ ($n - 1 \text{ digits}$)
 $+ ... + 9a_1 + a_n + a_{n-1} + ... + a_0$ A1
all the numbers of the form $99...9$ are divisible by 9 (to give $11...1$), R1
hence A is divisible by 9 if $\sum_{i=0}^n a_i$ is divisible by 9

Note: A method that uses the fact that $10^t \equiv 1 \pmod{9}$ is equally valid.

(b) by Fermat's Little Theorem
$$5^6 \equiv 1 \pmod{7}$$
 M1A1 $(126)_7 = (49 + 14 + 6)_{10} = (69)_{10}$ M1A1 $5^{(126)_7} \equiv 5^{(11 \times 6 + 3)_{10}} \equiv 5^{(3)_{10}} \pmod{7}$ M1A1 $5^{(3)_{10}} = (125)_{10} = (17 \times 7 + 6)_{10} \equiv 6 \pmod{7}$ M1A1 hence $a_0 = 6$ A1

[16]

- using Fermat's little theorem $n^5 \equiv n \pmod{5}$ 16. (M1) $n^5 - n \equiv 0 \pmod{5}$ **A**1 now $n^5 - n = n(n^4 - 1)$ (M1) $= n(n^2 - 1)(n^2 + 1)$ $= n(n-1)(n+1)(n^2+1)$ **A**1 hence one of the first two factors must be even **R**1 i.e. $n^5 - n \equiv 0 \pmod{2}$ thus $n^5 - n$ is divisible by 5 and 2 hence it is divisible by 10 R1 in base 10, since $n^5 - n$ is divisible by 10, then $n^5 - n$ must end in zero and hence n^5 and n must end with the same digit **R**1
 - (b) consider $n^5 n = n (n 1) (n + 1) (n^2 + 1)$ this is divisible by 3 since the first three factors are consecutive integers R1 hence $n^5 n$ is divisible by 3, 5 and 2 and therefore divisible by 30 in base 30, since $n^5 n$ is divisible by 30, then $n^5 n$ must end in zero and hence n^5 and n must end with the same digit R1

[9]

17. (a) **EITHER**

if p is a prime $a^p \equiv a \pmod{p}$ A1A1

OR

if p is a prime and $a \not\equiv 0 \pmod{p}$ then $a^{p-1} \equiv 1 \pmod{p}$

Note: Award A1 for *p* being prime and A1 for the congruence.

(b)
$$a_0 \equiv X \pmod{7}$$
 M1
 $X = k \times 5^6 + 25 + 15 + 5 - k$
by Fermat $5^6 \equiv 1 \pmod{7}$ R1
 $X \equiv k + 45 - k \pmod{7}$ (M1)
 $X \equiv 3 \pmod{7}$ A1
 $a_0 = 3$ A1

(c)
$$X = 2 \times 5^6 + 25 + 15 + 3 = 31293$$
 A1

EITHER

$$X - 7^{5} = 14486$$

$$X - 7^{5} - 6 \times 7^{4} = 80$$

$$X - 7^{5} - 6 \times 7^{4} - 7^{2} = 31$$

$$X - 7^{5} - 6 \times 7^{4} - 7^{2} - 4 \times 7 = 3$$

$$X = 7^{5} + 6 \times 7^{4} + 7^{2} + 4 \times 7 + 3$$

$$X = (160143)_{7}$$
(A1)

OR

$$31293 = 7 \times 4470 + 3$$
 (M1)
 $4470 = 7 \times 638 + 4$
 $638 = 7 \times 91 + 1$
 $91 = 7 \times 13 + 0$
 $13 = 7 \times 1 + 6$ (A1)
 $X = (160143)_7$

[11]

18. (a) **EITHER**

since
$$\gcd(a, b) = 1$$
 and $\gcd(a, c) = 1$ then $ax + by = 1$ and $ap + cq = 1$ for $x, y, p, q \in \mathbb{Z}$ M1A1 hence
$$(ax + by)(ap + cq) = 1 \qquad \qquad \text{A1}$$
 $a(xap + xcq + byp) + bc \ (yq) = 1 \qquad \qquad \text{M1}$ since $(xap + xcq + byp)$ and (yq) are integers R1 then $\gcd(a, bc) = 1$

OR

if $gcd(a, bc) \neq 1$, some prime p divides a and bc	M1A1
$\Rightarrow p \text{ divides } b \text{ or } c$	M1
either $gcd(a, b)$ or $gcd(a, c) \neq 1$	A1
contradiction \Rightarrow gcd $(a, bc) = 1$	R1

[5]

19. (a)
$$324 = 2 \times 129 + 66$$
 M1
 $129 = 1 \times 66 + 63$
 $66 = 1 \times 63 + 3$ A1
hence gcd $(324, 129) = 3$

(b) METHOD 1

Since $3 \mid 12$ the equation has a solution M1 $3 = 1 \times 66 - 1 \times 63$ M1 $3 = -1 \times 129 + 2 \times 66$ $3 = 2 \times (324 - 2 \times 129) - 129$ $3 = 2 \times 324 - 5 \times 129$ A1 $12 = 8 \times 324 - 20 \times 129$ A1 (x, y) = (8, -20) is a particular solution A1

Note: A calculator solution may gain M1M1A0A0A1.

A general solution is
$$x = 8 + \frac{129}{3}t = 8 + 43t$$
, $y = -20 - 108t$, $t \in \mathbb{Z}$ A1

METHOD 2

(c) EITHER

		The left side is even and the right side is odd so there are no solutions OR $gcd(82, 140) = 2$ 2 does not divide 3 therefore no solutions	M1R1AG A1 R1AG	[11]
20.	(a)	$315 = 5 \times 56 + 35$ $56 = 1 \times 35 + 21$ $35 = 1 \times 21 + 14$ $21 = 1 \times 14 + 7$ $14 = 2 \times 7$ therefore $gcd = 7$	M1 A1 A1 A1	
	(b)	(i) $7 = 21 - 14$ = 21 - (35 - 21) $= 2 \times 21 - 35$ $= 2 \times (56 - 35) - 35$ $= 2 \times 56 - 3 \times 35$ $= 2 \times 56 - 3 \times (315 - 5 \times 56)$ $= 17 \times 56 - 3 \times 315$ therefore $56 \times 51 + 315 \times (-9) = 21$ x = 51, y = -9 is a solution the general solution is $x = 51 + 45 N, y = -9 - 8N, N \in \mathbb{Z}$	M1 (A1) (A1) (A1) M1 (A1) A1A1	
		(ii) putting $N = -2$ gives $y = 7$, which is the required value of x	A1	[13]

21.
$$7854 = 2 \times 3315 + 1224$$
 M1A1 $3315 = 2 \times 1224 + 867$ A1 $1224 = 1 \times 867 + 357$ $867 = 2 \times 357 + 153$ $357 = 2 \times 153 + 51$ A1 The gcd is 51. A1 Since 51 does not divide 41, there are no solutions. A1

22. (a) $12\ 306 = 4 \times 2976 + 402$ M1 $2976 = 7 \times 402 + 162$ M1 $402 = 2 \times 162 + 78$ A1 $162 = 2 \times 78 + 6$ A1 $78 = 13 \times 6$ therefore gcd is 6

(b)
$$6 \mid 996$$
 means there is a solution
 $6 = 162 - 2(78)$ (M1)(A1)
 $= 162 - 2(402 - 2(162))$
 $= 5 (162) - 2 (402)$ (A1)
 $= 5 (2976 - 7 (402)) - 2 (402)$
 $= 5 (2976) - 37 (402)$ (A1)
 $= 5(2976) - 37(12 306 - 4(2976))$
 $= 153(2976) - 37(12 306)$ (A1)
 $996 = 25 398(2976) - 6142(12 306)$
 $\Rightarrow x_0 = -6142, y_0 = 25 398$ (A1)
 $\Rightarrow x = -6142 + \left(\frac{2976}{6}\right)t = -6142 + 496t$
 $\Rightarrow y = 25398 - \left(\frac{12306}{6}\right)t = 25398 - 2051t$ M1A1A1

[14]

[7]

23. (a)
$$ax \equiv b \pmod{p}$$

 $\Rightarrow a^{p-2} \times ax \equiv a^{p-2} \times b \pmod{p}$ M1A1
 $\Rightarrow a^{p-1}x \equiv a^{p-2} \times b \pmod{p}$ A1
but $a^{p-1} \equiv 1 \pmod{p}$ by Fermat's little theorem R1
 $\Rightarrow x = a^{p-2} \times b \pmod{p}$ AG

Note: Award M1 for some correct method and A1 for correct statement.

(b)	(i)	$17x \equiv 14 \pmod{21}$ $\Rightarrow x \equiv 17^{19} \times 14 \pmod{21}$ $17^{6} \equiv 1 \pmod{21}$ $\Rightarrow x \equiv (1)^{3} \times 17 \times 14 \pmod{21}$ $\Rightarrow x \equiv 7 \pmod{21}$	M1A1 A1 A1 A1	
	(ii)	$x \equiv 7 \pmod{21}$ $\Rightarrow x = 7 + 21t, t \in \mathbb{Z}$ $\Rightarrow 17(7 + 21t) + 21y = 14$ $\Rightarrow 119 + 357t + 21y = 14$ $\Rightarrow 21y = -105 - 357t$ $\Rightarrow y = -5 - 17t$	M1A1 A1 A1 A1	[14]
(a)	(i)	so $a - d = pn$ and $b - c = qn$, a - d + b - c = pn + qn (a + b) - (c + d) = n (p + q) $(a + b) \equiv (c + d) \pmod{n}$	M1A1 A1 AG	
		$(2r + 5v = 1 \pmod{6})$		

(ii)
$$\begin{cases} 2x + 5y \equiv 1 \pmod{6} \\ x + y \equiv 5 \pmod{6} \end{cases}$$
adding $3x + 6y \equiv 0 \pmod{6}$

$$6y \equiv 0 \pmod{6} \text{ so } 3x \equiv 0 \pmod{6}$$

$$x \equiv 0 \text{ or } x \equiv 2 \text{ or } x \equiv 4 \pmod{6}$$

$$\text{for } x \equiv 0, 0 + y \equiv 5 \pmod{6} \text{ so } y \equiv 5 \pmod{6}$$

$$\text{for } x \equiv 2, 2 + y \equiv 5 \pmod{6} \text{ so } y \equiv 3 \pmod{6}$$

$$\text{If } x \equiv 4 \pmod{6}, 4 + y \equiv 5 \pmod{6} \text{ so } y \equiv 1 \pmod{6}$$

(b) Suppose
$$x$$
 is a solution
97 is prime so $x^{97} \equiv x \pmod{97}$ M1
 $x^{97} - x \equiv 0 \pmod{97}$ A1
 $x^{97} - x + 1 \equiv 1 \neq 0 \pmod{97}$
Hence there are no solutions R1

[14]

24.

25. the *m*th term of the first sequence = 2 + 4 (m - 1) (M1)(A1) the *n*th term of the second sequence = 7 + 5 (n - 1) (A1)

EITHER

equating these, M1

$$5n = 4m - 4$$

$$5n = 4(m-1) \tag{A1}$$

$$\Rightarrow 4 \mid n \text{ so } n = 4s \text{ or } 5 \mid (m-1) \text{ so } m = 5s+1, s \in \mathbb{Z}^+$$
 (A1)A1

thus the common terms are of the form $\{2 + 20s; s \in \mathbb{Z}^+\}$

OR

the numbers of both sequences are

the general solution is $\{2 + 20s; s \in \mathbb{Z}^+\}$ (M1)A1

26. (a) the relevant powers of 16 are 16, 256 and 4096 then

$$51966 = 12 \times 4096$$
 remainder 2814 M1A1

$$2814 = 10 \times 256$$
 remainder 254

$$254 = 15 \times 16 \text{ remainder } 14$$

Note: CAFE is produced using a standard notation, accept explained alternative notations.

$$901 = 612 + 289 \tag{A1}$$

$$612 = 2 \times 289 + 34$$

$$289 = 8 \times 34 + 17$$

$$gcd(901, 612) = 17$$

(ii) working backwards (M1)

$$17 = 289 - 8 \times 34$$

$$=289-8\times(612-2\times289)$$

$$= 17 \times (901 - 612) - 8 \times 612$$

$$= 17 \times 901 - 25 \times 612$$

so
$$p = 17$$
, $q = -25$

[9]

A1

(iii) a particular solution is
$$s = 5p = 85, t = -5q = 125$$
 (A1) the general solution is $s = 85 + 36\lambda, t = 125 + 53\lambda$ M1A1 by inspection the solution satisfying all conditions is $(\lambda = -2), s = 13, t = 19$ A1

(c) (i) the congruence is equivalent to
$$9x = 3 + 18\lambda$$
 (A1) this has no solutions as 9 does not divide the RHS R1

(ii) the congruence is equivalent to
$$3x = 1 + 5\lambda$$
, $(3x \equiv 1 \pmod{5})$ A1 one solution is $x = 2$, so the general solution is $x = 2 + 5n$ ($x \equiv 2 \pmod{5}$) M1A1

[19]

27.
$$x \equiv 1 \pmod{3} \Rightarrow x = 3k + 1$$
 A1
Choose k such that $3k + 1 \equiv 2 \pmod{5}$ M1
With Euclid's algorithm or otherwise we find $k \equiv 7 + 5h$ A1
Choose k such that $2k + 15k \equiv 3 \pmod{7}$ M1
With Euclid's algorithm or otherwise $k \equiv 2 + 7j$ A1
Hence $k \equiv 2k + 15(k \equiv 2k + 105)$ A1 N3

28. (a)
$$N = 3 + 11t$$
 $M1$
 $3 + 11 t \equiv 4 \pmod{9}$
 $2t \equiv 1 \pmod{9}$ (A1)
multiplying by 5, $10t \equiv 5 \pmod{9}$ (M1)
 $t \equiv 5 \pmod{9}$ A1
 $t = 5 + 9s$ M1
 $N = 3 + 11(5 + 9s)$ M1
 $N = 58 + 99s \equiv 0 \pmod{7}$ A1
 $58 + 99s \equiv 0 \pmod{7}$ A1
 $58 + 99s \equiv 0 \pmod{7}$ A1
 $s \equiv 5 \pmod{7}$ A1
 $s = 5 + 7u$ M1
 $N = 58 + 99(5 + 7u)$ M1
 $N = 553 + 693u$ A1

Note: Allow solutions that are done by formula or an exhaustive, systematic listing of possibilities.

(b)
$$u = 3 \text{ or } 4$$

hence $N = 553 + 2079 = 2632 \text{ or } N = 553 + 2772 = 3325$ A1A1 [11]

29. (a) (i)
$$4^8 = 65536 \equiv 7 \pmod{9}$$
 A1 not valid because 9 is not a prime number R1

Note: The R1 is independent of the A1.

(ii) using Fermat's little theorem
$$M1$$

$$5^{6} \equiv 1 \pmod{7}$$

$$A1$$
therefore
$$(5^{6})^{10} = 5^{60} \equiv 1 \pmod{7}$$

$$also, 5^{4} = 625$$

$$\equiv 2 \pmod{7}$$

$$therefore$$

$$5^{64} \equiv 1 \times 2 \equiv 2 \pmod{7}$$
(so $n = 2$)
$$A1$$

Note: Accept alternative solutions not using Fermat.

(b) EITHER

solutions to
$$x \equiv 3 \pmod 4$$
 are 3, 7, 11, 15, 19, 23, 27, ... A1 solutions to $3x \equiv 2 \pmod 5$ are 4, 9, 14, 19 ... (M1)A1 so a solution is $x = 19$ A1 using the Chinese remainder theorem (or otherwise) the general solution is $x = 19 + 20n$ ($n \in \mathbb{Z}$) A1 (accept 19 (mod 20))

OR

$$x = 3 + 4t \implies 9 + 12t \equiv 2 \pmod{5}$$

$$\implies 2t \equiv 3 \pmod{5}$$

$$\implies 6t \equiv 9 \pmod{5}$$

$$\implies t \equiv 4 \pmod{5}$$
So $t = 4 + 5n$ and $x = 19 + 20n$ $(n \in \mathbb{Z})$
(accept 19 (mod 20))

Note: Also accept solutions done by formula.

[14]

30. (a) Multiply through by a^{p-2} .

$$a^{p-1} x \equiv a^{p-2} b \pmod{p}$$
 M1A1

Since, by Fermat's little theorem, $a^{p-1} \equiv 1 \pmod{p}$, R1

$$x \equiv a^{p-2} b \pmod{p}$$
 AG

Using the above result, (b)

$$x \equiv 3^3 \times 4 \pmod{5} \equiv 3 \pmod{5}$$
 M1A1

$$= 3, 8, 13, 18, 23,...$$
 (A1)

and
$$x \equiv 5^5 \times 6 \pmod{7} \equiv 4 \pmod{7}$$
 M1A1

$$=4, 11, 18, 25,...$$
 (A1)

The general solution is

$$x = 18 + 35n$$
 M1

i.e.
$$x \equiv 18 \pmod{35}$$

[11]

31. let *x* be the number of guests

$$x \equiv 1 \pmod{2}$$

$$x \equiv 1 \pmod{3}$$

$$x \equiv 1 \pmod{4}$$

$$x \equiv 1 \pmod{5}$$

$$x \equiv 1 \pmod{6}$$

$$x \equiv 0 \pmod{7}$$
 congruence (i) (M1)(A2)

the equivalent of the first five lines is

$$x \equiv 1 \pmod{(\text{lcm of } 2, 3, 4, 5, 6)} \equiv 1 \pmod{60}$$

 $\Rightarrow x = 60t + 1$

from congruence (i)
$$60t + 1 \equiv 0 \pmod{7}$$
 M1A1

 $60t \equiv -1 \pmod{7}$

$$60t \equiv 6 \pmod{7}$$

$$4t \equiv 6 \pmod{7}$$

$$2i - 2 \ (mod 7)$$

$$2t \equiv 3 \pmod{7}$$

$$\Rightarrow t = 7u + 5 \text{ (or equivalent)}$$
A1

$$homog \ r = 420u + 200 + 1$$

hence
$$x = 420u + 300 + 1$$

$$\Rightarrow x = 420u + 301$$

Note: Accept alternative correct solutions including exhaustion or formula from Chinese remainder theorem.

[10]