SOLUTIONS

1. $3 k+2$ and $5 k+3, k \in \mathbb{Z}$ are relatively prime
if, for all k, there exist $m, n \in \mathbb{Z}$ such that
$m(3 k+2)+n(5 k+3)=1$

R1M1A1
A1
A1
$2 m+3 n=1$
A1
$m=5, n=-3$
hence they are relatively prime
2. (a) EITHER

$3 \mid m \Rightarrow m \equiv 0(\bmod 3)$	(R1)
if this is false then $m \equiv 1$ or $2(\bmod 3)$ and $m^{2} \equiv 1$ or $4(\bmod 3)$	R1A1
since $4 \equiv 1(\bmod 3)$ then $m^{2} \equiv 1(\bmod 3)$	A1
similarly $n^{2} \equiv 1(\bmod 3)$ hence $m^{2}+n^{2} \equiv 2(\bmod 3)$ but $m^{2}+n^{2} \equiv 0(\bmod 3)$ this is a contradiction so $3 \mid m$ and $3 \mid n$	(R1)

OR
$m \equiv 0,1$ or $2(\bmod 3)$ and $n=0,1$ or $2(\bmod 3) \quad$ M1R1
$\Rightarrow m^{2} \equiv 0$ or $1(\bmod 3)$ and $n^{2} \equiv 0$ or $1(\bmod 3) \quad$ A1A1
so $m^{2}+n^{2} \equiv 0,1,2(\bmod 3)$
A1
but $3 \mid m^{2}+n^{2}$, so $m^{2}+n^{2} \equiv 0(\bmod 3)$
R1
$m \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod 3)$
R1
$\Rightarrow 3 \mid m$ and $3 \mid n$
(b) suppose $\sqrt{2}=\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and a and b are coprime \quad M1 then
$2 b^{2}=a^{2}$
A1
$a^{2}+b^{2}=3 b^{2}$
A1
$3 b^{2} \equiv 0(\bmod 3)$
A1
but by (a) a and b have a common factor so $\sqrt{2} \neq \frac{a}{b}$ R1
$\Rightarrow \sqrt{2}$ is irrational
3. (a) $457128=2 \times 228564$
$228564=2 \times 114282$
$114282=2 \times 57141$
$57141=3 \times 19047$
$19047=3 \times 6349$
$6349=7 \times 907$
trial division by $11,13,17,19,23$ and 29 shows that 907 is prime
therefore $457128=2^{3} \times 3^{2} \times 7 \times 907$
(b) we require the least integer such that $2^{2^{n}} \geq 10^{10^{6}}$
taking logs twice gives
$2^{n} \ln 2 \geq 10^{6} \ln 10$
$n \ln 2 \geq \ln \left(\frac{10^{6} \ln 10}{\ln 2}\right)$
$=6 \ln 10+\ln \ln 10-\ln \ln 2$
$n \geq 21.7$
least n is 22
(c) by a corollary to Fermat's Last Theorem
$5^{11} \equiv 5(\bmod 11)$ and $17^{11} \equiv 17(\bmod 11)$
$5^{11}+17^{11} \equiv 5+17 \equiv 0(\bmod 11)$
this combined with the evenness of LHS implies $25 \mid 5^{11}+17^{11} \quad$ R1AG
4. (a) any clearly indicated method of dividing 1189 by successive numbers M1 find that 1189 has factors 29 and/or 41
it follows that 1189 is not a prime number
Note: If no method is indicated, award A1 for the factors and A1 for the conclusion.
(b) (i) every positive integer, greater than 1, is either prime or can be expressed uniquely as a product of primes
Note: Award A1 for "product of primes" and A1 for "uniquely".
(ii) METHOD 1
let M and N be expressed as a product of primes as follows $M=A B$ and $N=A C$
where A denotes the factors that are common and B, C the disjoint factors that are not common
it follows that $G=A \quad$ A1 and $L=G B C$
from these equations, it follows that $G L=A \times A B C=M N$

METHOD 2

Let $M=2^{x_{1}} \times 3^{x_{2}} \times \ldots p_{n}^{x_{n}}$ and $N=2^{y_{1}} \times 3^{y_{2}} \times \ldots p_{n}{ }^{y_{n}}$ where p_{n} denotes the $n^{\text {th }}$ prime M1
Then $G=2^{\min \left(x_{1}, y_{1}\right)} \times 3^{\min \left(x_{2}, y_{2}\right)} \times \ldots p_{n}{ }^{\min \left(x_{n}, y_{n}\right)} \quad$ A1
and $L=2^{\max \left(x_{1}, y_{1}\right)} \times 3^{\max \left(x_{2}, y_{2}\right)} \times \ldots p_{n}{ }^{\max \left(x_{n}, y_{n}\right)} \quad$ A1
It follows that $G L=2^{x_{1}} \times 2^{y_{1}} \times 3^{x_{2}} \times 3^{y_{2}} \times \ldots \times p_{n}^{x_{n}} \times p_{n}^{y_{n}} \quad \mathrm{~A} 1$
$=M N \quad \mathrm{AG}$
5. (a) 14641 (base $a>6)=a^{4}+4 a^{3}+6 a^{2}+4 a+1$,
$=(a+1)^{4}$
this is the fourth power of an integer
(b) (i) $\quad a R a$ since $\frac{a}{a}=1=2^{0}$, hence R is reflexive
$a R b \Rightarrow \frac{a}{b}=2^{k} \Rightarrow \frac{b}{a}=2^{-k} \Rightarrow b R a$
so R is symmetric
$a R b$ and $b R c \Rightarrow \frac{a}{b}=2^{m}, m \in \mathbb{Z}$ and $b R c \Rightarrow \frac{b}{c}=2^{n}, n \in \mathbb{Z}$
$\Rightarrow \frac{a}{b} \times \frac{b}{c}=\frac{a}{c}=2^{m+n}, m+n \in \mathbb{Z}$ A1
$\Rightarrow a R c$ so transitive \quad R1
hence R is an equivalence relation $\quad \mathrm{AG}$
(ii) equivalence classes are $\{1,2,4,8\},\{3,6\},\{5,10\},\{7\},\{9\} \quad$ A3

Note: Award A2 if one class missing,
A1 if two classes missing, A0 if three or more classes missing.
6. (a) $N=a_{n} \times 2^{n}+a_{n-1} \times 2^{n-1}+\ldots+a_{1} \times 2+a_{0}$

If $a_{0}=0$, then N is even because all the terms are even.
Now consider

$$
a_{0}=N-\sum_{r=1}^{n} a_{r} \times 2^{r}
$$

If N is even, then a_{0} is the difference of two even numbers and is therefore even.

It must be zero since that is the only even digit in binary arithmetic.
(b) $\quad N=a_{n} \times 3^{n}+a_{n-1} \times 3^{n-1}+\ldots+a_{1} \times 3+a_{0}$

$$
\begin{aligned}
& =a_{n} \times\left(3^{n}-1\right)+a_{n-1} \times\left(3^{n-1}-1\right)+\ldots+a_{1} \times(3-1)+a_{n} \\
& +a_{n-1}+\ldots+a_{1}+a_{0}
\end{aligned}
$$

Since 3^{n} is odd for all $n \in \mathbb{Z}^{+}$, it follows that $3^{n}-1$ is even. R1

Therefore if the sum of the digits is even, N is the sum of even numbers and is even.
Now consider

$$
\begin{equation*}
a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}=N-\sum_{r=1}^{n} a_{r}\left(3^{r}-1\right) \tag{M1}
\end{equation*}
$$

If N is even, then the sum of the digits is the difference of even numbers and is therefore even.
7. consider the following

n	$\left(n^{2}+2 n+3\right)(\bmod 8)$
1	6
2	3
3	2
4	3
5	6
6	3
7	2
8	3

M1A2
R1
we see that the only possible values so far are 2,3 and 6
also, the table suggests that these values repeat themselves but we have to prove this
let $f(n)=n^{2}+2 n+3$, consider
$f(n+4)-f(n)=(n+4)^{2}+2(n+4)+3-n^{2}-2 n-3$
M1
$=8 n+24$
A1
since $8 n+24$ is divisible by 8 , M1
$f(n+4)=f(n)(\bmod 8)$
A1
this confirms that the values do repeat every 4 values of n so that 2,3 and 6 are the only values taken for all values of n

R1
8. (a) $a=\lambda c+1$
so $a b=\lambda b c+b \Rightarrow a b \equiv b(\bmod c)$
(b) the result is true for $n=0$ since $9^{0}=1 \equiv 1(\bmod 4)$
assume the result is true for $n=k$, i.e. $9^{k} \equiv 1(\bmod 4)$M1

consider $9^{k+1}=9 \times 9^{k}$

$$
\begin{aligned}
& \equiv 9 \times 1(\bmod 4) \text { or } 1 \times 9^{k}(\bmod 4) \\
& \equiv 1(\bmod 4)
\end{aligned}
$$

so true for $n=k \Rightarrow$ true for $n=k+1$ and since true for $n=0$ result follows by induction

Note: Do not award the final R1 unless both M1 marks have been awarded.
Note: Award the final R1 if candidates state $n=1$ rather than $n=0$
(c) let $M=\left(a_{n} a_{n-1} \ldots a_{0}\right)_{9}$

$$
\begin{equation*}
=a \times 9^{n}+a_{n-1} \times 9^{n-1}+\ldots+a_{0} \times 9^{0} \tag{M1}
\end{equation*}
$$

EITHER

$$
\begin{aligned}
& \equiv a_{n}(\bmod 4)+a_{n-1}(\bmod 4)+\ldots+a_{0}(\bmod 4) \\
& \equiv \sum a_{i}(\bmod 4) \\
& \text { so } M \text { is divisible by } 4 \text { if } \sum a_{i} \text { is divisible by } 4
\end{aligned}
$$

OR

$$
\begin{aligned}
& =a_{n}\left(9^{n}-1\right)+a_{n-1}\left(9^{n-1}-1\right)+\ldots+a_{1}\left(9^{1}-1\right) \\
& +a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}
\end{aligned}
$$

A1

Since $9^{n} \equiv 1(\bmod 4)$, it follows that $9^{n}-1$ is divisible by 4 , R1
so M is divisible by 4 if $\sum a_{i}$ is divisible by 4 AG
9. $\quad 67^{101} \equiv 2^{101}(\bmod 65)$ A1
$2^{6} \equiv-1(\bmod 65)$
$2^{101} \equiv\left(2^{6}\right)^{16} \times 2^{5}$ A1
$\equiv(-1)^{16} \times 32(\bmod 65)$
A1
$\equiv 32(\bmod 65)$
\therefore remainder is 32

10. EITHER

we work modulo 3 throughout
the values of a, b, c, d can only be $0,1,2$
R2
since there are 4 variables but only 3 possible values, at least 2 of the variables must be equal $(\bmod 3)$
therefore at least 1 of the differences must be $0(\bmod 3)$ R2
the product is therefore $0(\bmod 3)$

OR

we attempt to find values for the differences that do not give $0(\bmod 3)$
for the product
we work modulo 3 throughout
we note first that none of the differences can be zero R1
$a-b$ can therefore only be 1 or 2 R1
suppose it is 1 , then $b-c$ can only be 1
since if it is $2,(a-b)+(b-c) \equiv 3 \equiv 0(\bmod 3)$ R1
$c-d$ cannot now be 1 because if it is
$(a-b)+(b-c)+(c-d)=a-d \equiv 3 \equiv 0(\bmod 3) \quad$ R1
$c-d$ cannot now be 2 because if it is
$(b-c)+(c-d)=b-d \equiv 3 \equiv 0(\bmod 3) \quad \mathrm{R} 1$
we cannot therefore find values of c and d to give the required result R1
a similar argument holds if we suppose $a-b$ is 2 , in which case $b-c$ must
be 2 and we cannot find a value of $c-d$
R1
the product is therefore $0(\bmod 3)$
11. (a) Let p_{1}, \ldots, p_{n} be the set of primes that divide either a or b M1

Then $a=p_{1}^{\alpha_{2}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}$ and $b=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{n}^{\beta_{n}} \quad$ A1A1
Hence $a b=p_{1}^{\alpha_{1}+\beta_{1}} p_{2}^{\alpha_{2}+\beta_{2}} \ldots p_{n}^{\alpha_{n}+\beta_{n}}$
A1
Furthermore $\min \left\{\alpha_{j}, \beta_{j}\right\}+\max \left\{\alpha_{j}, \beta_{j}\right\}=\alpha_{j}+\beta_{j}$ for $j=1,2, \ldots, n \quad$ A1
Hence $a b=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}+\max \left\{\alpha_{1}, \beta_{1}\right\}} \ldots p_{n}^{\min \left\{\alpha_{n}, \beta_{n}\right\}+\max \left\{\alpha_{n}, \beta_{n}\right\}} \quad$ A1
$a b=\operatorname{gcd}(a, b) \times \operatorname{lcm}(a, b)$
AG
(b) $\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$

Hence $\operatorname{gcd}(a, b) \mid a+b \quad$ A1
so that $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(a, a+b) \quad * \quad$ A1
Also $\operatorname{gcd}(a, a+b) \mid a$ and $\operatorname{gcd}(a, b) \mid a+b \quad$ A1
Hence $\operatorname{gcd}(a, a+b) \mid b \quad$ A1
so that $\operatorname{gcd}(a, a+b) \mid \operatorname{gcd}(a, b) \quad * * \quad$ A1
From * and ${ }^{* *}: \operatorname{gcd}(a, b)=\operatorname{gcd}(a, a+b) \quad$ A1AG
12. (a) $10201=a \times 8^{4}+b \times 8^{3}+c \times 8^{2}+d \times 8+e$
$=4096 a+512 b+64 c+8 d+e \Rightarrow a=2$
$=10201-2 \times 4096=2009=512 b+64 c+8 d+e \Rightarrow b=3$
$2009-3 \times 512=473=64 c+8 d+e \Rightarrow c=7$
$473-7 \times 64=25=8 d+e \Rightarrow d=3$ and $e=1$
$10201=23731$ (base 8)
(b) $8^{n} \equiv 1(\bmod 7)$ for positive integer n

Consider the octal number
$u_{n} u_{n-1} \ldots u_{1} u_{0}=u_{n}+u_{n-1}+u_{1}+u_{0}(\bmod 7)$
from which it follows that an octal number is divisible by 7 if and only if A1 the sum if the digits is divisible by 7 .
Hence $10201 \equiv a+b+c+d+e(\bmod 7)$ A1
(c) $10201 \equiv 2+3+7+3+1 \equiv 2(\bmod 7)$
13. (a) let $N=a_{n} a_{n-1} \ldots a_{1} a_{0}=a_{n} \times 9^{n}+a_{n-1} \times 9^{n-1}+\ldots+a_{1} \times 9+a_{0} \quad$ M1A1 all terms except the last are divisible by 3 and so therefore is their sum R1 it follows that N is divisible by 3 if a_{0} is divisible by 3
(b) EITHER
consider N in the form
$N=a_{n} \times\left(9^{n}-1\right)+a_{n-1} \times\left(9^{n-1}-1\right)+\ldots+a_{1}(9-1)+\sum_{i=0}^{n} a_{i}$
all terms except the last are even so therefore is their sum R1 it follows that N is even if $\sum_{i=0}^{n} a_{i}$ is even AG

OR

working modulo $2,9^{k} \equiv 1(\bmod 2)$
hence $N=a_{n} a_{n-1} \ldots a_{1} a_{0}=a_{n} \times 9^{n}+a_{n-1} \times 9^{n-1}+\ldots+a_{1} \times 9+a_{0}$
$\equiv \sum_{i=0}^{n} a_{i}(\bmod 2)$
it follows that N is even if $\sum_{i=0}^{n} a_{i}$ is even
(c) the number is divisible by 3 because the least significant digit is 3 it is divisible by 2 because the sum of the digits is 44 , which is even dividing the number by 2 gives (232430286),

Note: Accept alternative valid solutions
14. (a) $x \equiv y(\bmod n) \Rightarrow x=y+k n,(k \in \mathbb{Z})$
(b) $x \equiv y(\bmod n)$
$\Rightarrow x=y+k n$

$$
x^{2}=y^{2}+2 k n y+k^{2} n^{2}
$$

$\Rightarrow x^{2}=y^{2}+\left(2 k y+k^{2} n\right) n$
$\Rightarrow x^{2} \equiv y^{2}(\bmod n)$

(c) EITHER

$x^{2} \equiv y^{2}(\bmod n)$
$\Rightarrow x^{2}-y^{2}=0(\bmod n)$
$\Rightarrow(x-y)(x+y)=0(\bmod n)$
This will be the case if
$x+y=0(\bmod n)$ or $x=-y(\bmod n)$ R1
so $x \neq y(\bmod n)$ in general R1
OR
Any counter example, e.g. $n=5, x=3, y=2$, in which case R2
$x^{2} \equiv y^{2}(\bmod n)$ but $x \not \equiv y(\bmod n)$.
(false) R1R1
15. (a) consider the decimal number $A=a_{n} a_{n-1}, \ldots a_{0} \quad$ M1
$A=a_{n} \times 10^{n}+a_{n-1} \times 10^{n-1}+\ldots+a_{1} \times 10+a_{0} \quad$ M1
$=a_{n} \times\left(10^{n}-1\right)+a_{n-1} \times\left(10^{n-1}-1\right)+\ldots+a_{1} \times(10-1)$
$+a_{n}+a_{n-1}+\ldots+a_{0} \quad$ M1A1
$=a_{n} \times 99 \ldots 9(n$ digits $)+a_{n-1} \times 99 \ldots 9(n-1$ digits $)$
$+\ldots+9 a_{1}+a_{n}+a_{n-1}+\ldots+a_{0}$
all the numbers of the form $99 \ldots 9$ are divisible by 9 (to give $11 \ldots 1$),
hence A is divisible by 9 if $\sum_{i=0}^{n} a_{i}$ is divisible by 9
Note: A method that uses the fact that $10^{t} \equiv 1(\bmod 9)$ is equally valid.
(b) by Fermat's Little Theorem $5^{6} \equiv 1(\bmod 7)$

M1A1
$(126)_{7}=(49+14+6)_{10}=(69)_{10}$ M1A1
$5^{(126)_{7}} \equiv 5^{(11 \times 6+3)_{10}} \equiv 5^{(3)_{10}}(\bmod 7)$
M1A1
$5^{(3)_{10}}=(125)_{10}=(17 \times 7+6)_{10} \equiv 6(\bmod 7)$
M1A1
hence $a_{0}=6$
A1
16. (a) using Fermat's little theorem $n^{5} \equiv n(\bmod 5)$

$$
\begin{align*}
& n^{5}-n \equiv 0(\bmod 5) \\
& \text { now } \begin{aligned}
n^{5}-n & =n\left(n^{4}-1\right) \\
& =n\left(n^{2}-1\right)\left(n^{2}+1\right) \\
& =n(n-1)(n+1)\left(n^{2}+1\right)
\end{aligned} \tag{M1}
\end{align*}
$$

A1
hence one of the first two factors must be even
i.e. $n^{5}-n \equiv 0(\bmod 2)$
thus $n^{5}-n$ is divisible by 5 and 2
hence it is divisible by 10
in base 10 , since $n^{5}-n$ is divisible by 10 , then $n^{5}-n$ must end in zero and hence n^{5} and n must end with the same digit
(b) consider $n^{5}-n=n(n-1)(n+1)\left(n^{2}+1\right)$
this is divisible by 3 since the first three factors are consecutive integers R1
hence $n^{5}-n$ is divisible by 3,5 and 2 and therefore divisible by 30
in base 30 , since $n^{5}-n$ is divisible by 30 , then $n^{5}-n$ must end in zero and
hence n^{5} and n must end with the same digit
17. (a) EITHER
if p is a prime $a^{p} \equiv a(\bmod p)$

OR

if p is a prime and $a \not \equiv 0(\bmod p)$ then $a^{p-1} \equiv 1(\bmod p)$
Note: Award A1 for p being prime and A1 for the congruence.
(b) $a_{0} \equiv X(\bmod 7)$
$X=k \times 5^{6}+25+15+5-k$
by Fermat $5^{6} \equiv 1(\bmod 7)$R1
$X \equiv k+45-k(\bmod 7)$
$X \equiv 3(\bmod 7)$
$a_{0}=3$
(c) $X=2 \times 5^{6}+25+15+3=31293$

EITHER

$$
\begin{align*}
& X-7^{5}=14486 \tag{M1}\\
& X-7^{5}-6 \times 7^{4}=80 \\
& X-7^{5}-6 \times 7^{4}-7^{2}=31 \\
& X-7^{5}-6 \times 7^{4}-7^{2}-4 \times 7=3 \\
& X=7^{5}+6 \times 7^{4}+7^{2}+4 \times 7+3 \tag{A1}\\
& X=(160143)_{7}
\end{align*}
$$

OR

$31293=7 \times 4470+3$
$4470=7 \times 638+4$
$638=7 \times 91+1$
$91=7 \times 13+0$
$13=7 \times 1+6$
(A1)
$X=(160143)_{7}$
18. (a) EITHER
since $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$ then
$a x+b y=1$ and $a p+c q=1$ for $x, y, p, q \in \mathbb{Z}$ M1A1
hence
$(a x+b y)(a p+c q)=1$
$a(x a p+x c q+b y p)+b c(y q)=1$
M1
since $(x a p+x c q+b y p)$ and $(y q)$ are integers R1
then $\operatorname{gcd}(a, b c)=1$
OR
if $\operatorname{gcd}(a, b c) \neq 1$, some prime p divides a and $b c$
$\Rightarrow p$ divides b or c
either $\operatorname{gcd}(a, b)$ or $\operatorname{gcd}(a, c) \neq 1$
A1
contradiction $\Rightarrow \operatorname{gcd}(a, b c)=1$ R1
19. (a) $324=2 \times 129+66$
$129=1 \times 66+63$
$66=1 \times 63+3$
hence $\operatorname{gcd}(324,129)=3$

(b) METHOD 1

Since $3 \mid 12$ the equation has a solution M1
$3=1 \times 66-1 \times 63 \quad$ M1
$3=-1 \times 129+2 \times 66$
$3=2 \times(324-2 \times 129)-129$
$3=2 \times 324-5 \times 129$
A1
$12=8 \times 324-20 \times 129 \quad$ A1
$(x, y)=(8,-20)$ is a particular solution
A1
Note: A calculator solution may gain M1M1A0A0A1.
A general solution is $x=8+\frac{129}{3} t=8+43 t, y=-20-108 t, t \in \mathbb{Z}$

METHOD 2

$$
\begin{array}{lr}
324 x+129 y=12 & \\
108 x+43 y=4 & \mathrm{~A} 1 \\
108 x \equiv 4(\bmod 43) \Rightarrow 27 x \equiv 1(\bmod 43) & \mathrm{A} 1 \\
x=8+43 t & \mathrm{~A} 1 \\
108(8+43 t)+43 y=4 & \mathrm{M} 1 \\
864+4644 t+43 y=4 & \\
43 y=-860-4644 t & \mathrm{~A} 1 \\
y=-20-108 t & \mathrm{~A} 1
\end{array}
$$

(c) EITHER

The left side is even and the right side is odd so there are no solutions

M1R1AG

OR

$\operatorname{gcd}(82,140)=2$
A1
2 does not divide 3 therefore no solutions R1AG
20. (a) $315=5 \times 56+35$ M1
$56=1 \times 35+21$
$35=1 \times 21+14$
$21=1 \times 14+7$
$14=2 \times 7$
A1
therefore $\mathrm{gcd}=7$ A1
(b) (i) $7=21-14$
$=21-(35-21)$

$$
\begin{equation*}
=2 \times 21-35 \tag{A1}
\end{equation*}
$$

$$
=2 \times(56-35)-35
$$

$$
=2 \times 56-3 \times 35
$$

$$
=2 \times 56-3 \times(315-5 \times 56)
$$

$$
\begin{equation*}
=17 \times 56-3 \times 315 \tag{A1}
\end{equation*}
$$

therefore $56 \times 51+315 \times(-9)=21$ M1
$x=51, y=-9$ is a solution
the general solution is $x=51+45 N, y=-9-8 N, N \in \mathbb{Z}$
(ii) putting $N=-2$ gives $y=7$, which is the required value of x
21. $7854=2 \times 3315+1224$
$3315=2 \times 1224+867$
$1224=1 \times 867+357$
$867=2 \times 357+153$
$357=2 \times 153+51$
$153=3 \times 51$
The gcd is 51 .
A1
Since 51 does not divide 41 ,
there are no solutions.
22. (a) $12306=4 \times 2976+402$
$2976=7 \times 402+162$
$402=2 \times 162+78$
$162=2 \times 78+6$
$78=13 \times 6$
therefore gcd is 6
(b) $6 \mid 996$ means there is a solution
$6=162-2(78)$
$=162-2(402-2(162))$
$=5(162)-2(402)$
$=5(2976-7(402))-2(402)$
$=5(2976)-37(402)$
$=5(2976)-37(12306-4(2976))$
$=153(2976)-37(12306)$
$996=25398(2976)-6142(12306)$
$\Rightarrow x_{0}=-6142, y_{0}=25398$
$\Rightarrow x=-6142+\left(\frac{2976}{6}\right) t=-6142+496 t$
$\Rightarrow y=25398-\left(\frac{12306}{6}\right) t=25398-2051 t$
23. (a) $a x \equiv b(\bmod p)$
$\Rightarrow a^{p-2} \times a x \equiv a^{p-2} \times b(\bmod p)$
M1A1
$\Rightarrow a^{p-1} x \equiv a^{p-2} \times b(\bmod p)$
A1
but $a^{p-1} \equiv 1(\bmod p)$ by Fermat's little theorem
R1
$\Rightarrow x=a^{p-2} \times b(\bmod p)$
AG
Note: Award M1 for some correct method and A1 for correct statement.
(b) (i) $17 x \equiv 14(\bmod 21)$
$\Rightarrow x \equiv 17^{19} \times 14(\bmod 21) \quad$ M1A1
$17^{6} \equiv 1(\bmod 21)$
A1
$\Rightarrow x \equiv(1)^{3} \times 17 \times 14(\bmod 21)$
$\Rightarrow x=7(\bmod 21)$
A1
(ii) $x \equiv 7(\bmod 21)$
$\Rightarrow x=7+21 t, t \in \mathbb{Z}$
$\Rightarrow 17(7+21 t)+21 y=14$
$\Rightarrow 119+357 t+21 y=14$
$\Rightarrow 21 y=-105-357 t$
A1
$\Rightarrow y=-5-17 t$
A1
[14]
24. (a) (i) $\quad a \equiv d(\bmod n)$ and $b \equiv c(\bmod n)$
so $a-d=p n$ and $b-c=q n$,
$a-d+b-\mathrm{c}=p n+q n$
$(a+b)-(c+d)=n(p+q)$
A1
$(a+b) \equiv(c+d)(\bmod n)$
(ii) $\left\{\begin{array}{c}2 x+5 y \equiv 1(\bmod 6) \\ x+y \equiv 5(\bmod 6)\end{array}\right.$
adding $3 x+6 y \equiv 0(\bmod 6)$
$6 y \equiv 0(\bmod 6)$ so $3 x \equiv 0(\bmod 6)$
$x \equiv 0$ or $x \equiv 2$ or $x \equiv 4(\bmod 6)$
for $x \equiv 0,0+y \equiv 5(\bmod 6)$ so $y \equiv 5(\bmod 6)$
for $x \equiv 2,2+y \equiv 5(\bmod 6)$ so $y \equiv 3(\bmod 6)$
If $x \equiv 4(\bmod 6), 4+y \equiv 5(\bmod 6)$ so $y \equiv 1(\bmod 6)$
(b) Suppose x is a solution

97 is prime so $x^{97} \equiv x(\bmod 97)$
$x^{97}-x \equiv 0(\bmod 97)$
$x^{97}-x+1 \equiv 1 \neq 0(\bmod 97)$
Hence there are no solutions R1
25. the m th term of the first sequence $=2+4(m-1)$
the nth term of the second sequence $=7+5(n-1)$

EITHER

equating these,

$$
\begin{align*}
& 5 n=4 m-4 \\
& 5 n=4(m-1) \tag{A1}
\end{align*}
$$

4 and 5 are coprime
$\Rightarrow 4 \mid n$ so $n=4 s$ or $5 \mid(m-1)$ so $m=5 s+1, s \in \mathbb{Z}^{+}$
thus the common terms are of the form $\left\{2+20 s ; s \in \mathbb{Z}^{+}\right\}$

OR

the numbers of both sequences are
$2,6,10,14,18,22$
7, 12, 17, 22
A1
so 22 is common
A1
identify the next common number as 42
the general solution is $\left\{2+20 s ; s \in \mathbb{Z}^{+}\right\}$
(M1)A1
26. (a) the relevant powers of 16 are 16, 256 and 4096
then
$51966=12 \times 4096$ remainder 2814
$2814=10 \times 256$ remainder 254
$254=15 \times 16$ remainder 14
the hexadecimal number is CAFE
Note: CAFE is produced using a standard notation, accept explained alternative notations.
(b) (i) using the Euclidean Algorithm
$901=612+289$
$612=2 \times 289+34$
$289=8 \times 34+17$
$\operatorname{gcd}(901,612)=17$
(ii) working backwards
$17=289-8 \times 34$
$=289-8 \times(612-2 \times 289)$
$=17 \times(901-612)-8 \times 612$
$=17 \times 901-25 \times 612$
so $p=17, q=-25$
(iii) a particular solution is
$s=5 p=85, t=-5 q=125$
the general solution is
$s=85+36 \lambda, t=125+53 \lambda$
M1A1
by inspection the solution satisfying all conditions is $(\lambda=-2), s=13, t=19$
(c) (i) the congruence is equivalent to $9 x=3+18 \lambda$
this has no solutions as 9 does not divide the RHS
(ii) the congruence is equivalent to $3 x=1+5 \lambda,(3 x \equiv 1(\bmod 5))$ one solution is $x=2$, so the general solution is $x=2+5 n(x \equiv 2(\bmod 5))$

M1A1
27. $x \equiv 1(\bmod 3) \Rightarrow x=3 k+1$

Choose k such that $3 k+1 \equiv 2(\bmod 5) \quad$ M1
With Euclid's algorithm or otherwise we find
$k \equiv 7+5 h$
A1
Choose h such that $22+15 k \equiv 3(\bmod 7) \quad$ M1
With Euclid's algorithm or otherwise
$k \equiv 2+7 j$
A1
Hence $x=22+15(2+7 j)=52+105 j$
A1 N3
28. (a) $N=3+11 t$
$3+11 t \equiv 4(\bmod 9)$
$2 t \equiv 1(\bmod 9)$
multiplying by $5,10 t \equiv 5(\bmod 9)$
$t \equiv 5(\bmod 9)$
A1
$t=5+9 s$
M1
$N=3+11(5+9 s)$
$N=58+99 s$
A1
$58+99 s \equiv 0(\bmod 7)$
$2+s \equiv 0(\bmod 7)$
$s \equiv 5(\bmod 7)$
$s=5+7 u$ M1
$N=58+99(5+7 u)$
$N=553+693 u$
Note: Allow solutions that are done by formula or an exhaustive, systematic listing of possibilities.
(b) $u=3$ or 4
hence $N=553+2079=2632$ or $N=553+2772=3325 \quad \mathrm{~A} 1 \mathrm{~A} 1$
29. (a) (i) $4^{8}=65536 \equiv 7(\bmod 9)$
not valid because 9 is not a prime number
Note: The R1 is independent of the A1.
(ii) using Fermat's little theorem
$5^{6} \equiv 1(\bmod 7)$
therefore
$\left(5^{6}\right)^{10}=5^{60} \equiv 1(\bmod 7)$ A1
also, $5^{4}=625$ M1
$\equiv 2(\bmod 7)$ A1
therefore

$$
5^{64} \equiv 1 \times 2 \equiv 2(\bmod 7) \quad(\text { so } n=2)
$$

Note: Accept alternative solutions not using Fermat.
(b) EITHER
solutions to $x \equiv 3(\bmod 4)$ are
$3,7,11,15,19,23,27, \ldots$
solutions to $3 x \equiv 2(\bmod 5)$ are 4, $9,14,19 \ldots$
so a solution is $x=19$
using the Chinese remainder theorem (or otherwise)
the general solution is $x=19+20 n(n \in \mathbb{Z})$
(accept $19(\bmod 20))$

OR

```
\(x=3+4 t \Rightarrow 9+12 t \equiv 2(\bmod 5)\)
\(\Rightarrow 2 t \equiv 3(\bmod 5)\)
\(\Rightarrow 6 t \equiv 9(\bmod 5)\)
\(\Rightarrow t \equiv 4(\bmod 5)\)
    A1
so \(t=4+5 n\) and \(x=19+20 n(n \in \mathbb{Z})\)
M1A1
(accept \(19(\bmod 20))\)
```

Note: Also accept solutions done by formula.
30. (a) Multiply through by a^{p-2}.

$$
a^{p-1} x \equiv a^{p-2} b(\bmod p)
$$

Since, by Fermat's little theorem, $a^{p-1} \equiv 1(\bmod p)$,
$x \equiv a^{p-2} b(\bmod p)$
(b) Using the above result,

$$
\begin{array}{rlr}
x & \equiv 3^{3} \times 4(\bmod 5) \equiv 3(\bmod 5) \\
& =3,8,13,18,23, \ldots & \text { M1A1 } \\
\text { and } x & \equiv 5^{5} \times 6(\bmod 7) \equiv 4(\bmod 7) \\
& =4,11,18,25, \ldots & \text { M1A1 } \\
(\mathrm{A} 1)
\end{array}
$$

The general solution is

$$
\begin{aligned}
x & =18+35 n & \text { M1 } \\
\text { i.e. } x & \equiv 18(\bmod 35) & \text { A1 }
\end{aligned}
$$

31. let x be the number of guests
$x \equiv 1(\bmod 2)$
$x \equiv 1(\bmod 3)$
$x \equiv 1(\bmod 4)$
$x \equiv 1(\bmod 5)$
$x \equiv 1(\bmod 6)$
$x \equiv 0(\bmod 7)$ congruence (i)
the equivalent of the first five lines is
$x \equiv 1(\bmod (1 \mathrm{~cm}$ of $2,3,4,5,6)) \equiv 1(\bmod 60)$
$\Rightarrow x=60 t+1$
from congruence (i) $60 t+1 \equiv 0(\bmod 7)$
$60 t \equiv-1(\bmod 7)$
$60 t \equiv 6(\bmod 7)$
$4 t \equiv 6(\bmod 7)$
$2 t \equiv 3(\bmod 7)$
$\Rightarrow t=7 u+5$ (or equivalent) A1
hence $x=420 u+300+1 \quad$ A1
$\Rightarrow x=420 u+301$
smallest number of guests is 301
A1 N6
Note: Accept alternative correct solutions including exhaustion or formula from Chinese remainder theorem.
