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MATH HL  

OPTION 

REVISION - SOLUTIONS 

SETS, RELATIONS AND GROUPS 

Instructor: Christos Nikolaidis 

 

PART A: SETS AND RELATIONS 

 

SETS 

 

1. Venn diagrams are 

A–B

A–BA

A
B

B

B–A

B–A  (A1) 

Note: Award (A1) if both the Venn diagrams are correct 

otherwise award (A0). 

 From the Venn diagrams, we see that B∩(A – B) = φ  and B∩(B – A) = B – A   (M1) 

Hence they are not equal.     (C1) 

           Note: Award (M0)(C1) if no reason is given. Accept other correct diagrams. 

[3] 

2. (a) (A ∪ B)′ is given by 

 

A B

 (A1) 

 A′ ∩ B′ is given by 

 

A B

 (A1) 

 Hence (A ∪ B)′ = A′ ∩ B′. (AG) 2 

(b) [(A′ ∪ B) ∩ (A ∪ B′)]
′
 = (A′ ∪ B)′ ∪ (A ∪ B′)′ (A1) 

 = (A ∩ B′) ∪ (A′ ∩ B) (A1) 

 = [(A ∩ B′) ∪ A′] [(A ∩ B′) ∪ B)] (M1) 

 = [(A ∪ A′) ∩ (B′ ∪ A′] ∩ [(A ∪ B) ∩ (B′ ∪ B)] 

 = (B′ ∪ A′) ∩ (A ∪ B) (A1) 

 = (A ∩ B)′ ∩ (A ∪ B) (AG) 2 
[6] 
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3. (a) 

A

B

 
 The shaded area denotes A – B and A ∩ B′ (A1) 

confirming that A – B = A ∩ B′ (AG) 1 

(b)  A – (B ∪ C) = A ∩ (B ∪ C)′ (M1) 

  = A ∩ (B′ ∩ C′) 
  = A ∩ B′ ∩ C′ (A1) 

 (A – B) ∩ (A – C) = (A ∩ B′) ∩ (A ∩ C′) (M1) 

  = A ∩ B′ ∩ A ∩ C′  
   = A ∩ A ∩ B′ ∩ C′ 

  = A ∩ B′ ∩ C′ (A1) 4 
[5] 

4. (a) 

A   B 

A   B

A–B B–A

A AB B

∩

∩

 (A1)(A1) 2 

(b) (A ∪ B) – (B ∩ A) = (A ∪ B) ∩ (B ∩ A)′ 
= [A ∩ (B ∩ A)′] ∪ [B ∩ (B ∩ A)′] (A1) 

= [A ∩ (B′ ∪ A′)] ∪ [B ∩ (B′ ∪ A′)] (M1) 

= (A ∩ B′) ∪ (A ∩ A′) ∪ (B ∩ B′) ∪ (B ∩ A′) = (A ∩ B′) ∪ (B ∩ A′) (M1) 

= (A – B) ∪ (B – A) (A1) 4 
[6] 

5.  

 

 

 

 
[4] 
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6. A∆B = (A\B) ∪ (B\A) 

  = (A ∩ B′) ∪(B ∩ A′) 

 = ((A ∩ B′) ∪ B) ∩ ((A ∩ B′) ∪ A′) M1A1 

 = ((A ∪ B) ∩ (B′ ∪ B) ∩ ((A ∪ A′) ∩ (B′ ∪ A′)) M1A1 

 = ((A ∪ B) ∩ U) ∩ (U ∩ (B′ ∪ A′) A1 

 = (A ∪ B) ∩ (A′ ∪ B′) 

 = (A ∪ B) ∩ (A ∩ B)′ A1 

Note: Illustration using a Venn diagram is not a proof. 

[6] 

7. (a)  

A A

B B

C C
A ∩ B

A ∪ C

B ∩ C

(A ∩ ∪ B  C)

(A ∪ ∩ ∪   (B  B C) )

(     )

(     )
(     )

(               ) (     )

 

 That is, (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)  (M1)(A1) 2 

(b) From part (a) (A' ∩ B) ∪ C' = (A' ∪ C') ∩ (B ∪ C'). (A1) 

From De Morgan's laws (A ∩ C)' = A' ∪ C′, and (B' ∩ C)' = B ∪ C′ (A1)(A1) 

So (A' ∩ B) ∪ C′ = (A ∩ C)′ ∩ (B′ ∩ C)′ (AG) 3 
[5] 

8. By definition of • and de Morgan’s laws, 

(X • Y)′ = (X ∩ Y)′ ∩ (X′ ∩ Y′)′ (M1) 

  = (X′ ∪ Y′) ∩ (X ∪ Y) (M1) 

  = (X ∪ Y) ∩ (X′ ∪ Y′) (R1) 3 
[3] 

9. (a) #A A A A′ ′= ∪ A′=  (A1)(AG) 1 

(b) ( # ) #( # ) #A A B B A B′ ′= ( ) ( )A B′ ′ ′ ′= ∪ A B= ∪
 

(M1)(A1)(AG) 2 

(c) ( # )#( # )A B A B = ( ) #( )A B A B′ ′ ′ ′∪ ∪  (M1)(A1) 

 ( )A B′ ′ ′= ∪  (A1) 

 A B= ∩  (by de Morgan’s law)  (AG) 3 
[6] 

RELATIONS 

 

10. (a) Since the main diagonal of the matrix has ones, this means that 

every element is related to itself and consequently the relation is 

reflexive. (C1) 

Also, the matrix is symmetric and hence, the relation is symmetric. (C2) 3 

(b) The partition of A is the set of all equivalent classes. (C1) 

The three classes are {{a, c, e}, {b, d}, {f}} (A3) 4 
[7] 

B ∪ C (A ∪ C) ∩ (B ∪ C) 
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11. (a) gcd( , ) 1a a a= > , since a S∈ . (A1) 

Hence R is reflexive. (AG) 1 

(b) Since gcd( , ) gcd ( , )a b b a= , (M1) 

gcd( , ) 1 gcd ( , ) 1a b b a> ⇒ >  (A1) 

Hence R is symmetric (AG) 2 

(c) Any correct counter example e.g. 

gcd(25, 15) 5 25 15 R= ⇒  (A1) 

gcd(15, 21) 3 15 21 R= ⇒  (A1) 

gcd(25, 21) 1 25 not  21 R= ⇒  (A1) 

Hence R is not transitive (AG) 3 
[6] 

12. (a) R is reflexive because .zRzzz ⇒=  (A1) 

R is symmetric because ( ) )( 12211221 RzzRzzzzzz ⇒⇒=⇒=  (A1) 

R is transitive because ( )313221 and zzzzzz =⇒==  

)and( 313221 RzzRzzRzz ⇒⇒  (A1) 3 

(b) In the Argand diagram this corresponds to the concentric circles (A1) 

centered at the origin. (A1) 2 
[5] 

13. (a) To show that the relation is an equivalence relation we have to show 

that it is: 

 Reflexive: (a, b) ∆ (a, b) since a
2
 + b

2
 = a

2
 + b

2
 (R1) 

 Symmetric: (a, b) ∆ (c, d) ⇒ a
2
 + b

2
 = c

2
 + d

2
 ⇔ 

c
2
 + d

2
 = a

2
 + b

2
 ⇔ (c, d)∆(a, b) (R1) 

 Transitive: (a, b)∆(c, d) and (c, d)∆(e, f) ⇔ 

a
2
 + b

2
 = c

2
 + d

2
 and c

2
 + d

2
 = e

2
 + f

2
 ⇔ 

a
2
 + b

2
 = e

2
 + f

2
 ⇔ (a, b)∆(e, f) (R2) 

(b) This is the set of ordered pairs (x, y) such that x
2
 + y

2
 = 5. (R1)(A1) 

Notes: It is a circle with radius 5 . 

(c) The partition is the set of all concentric circles in the plane with 

the origin as the centre. (R1)(A1) 
[7] 

14. 

 
[6] 
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15. (a) To show that R is an equivalence relation, we show it is reflexive, symmetric, transitive. 

 Reflexivity: Since ab = ba for a, b ∈ , we have (a, b) R (a, b). (A1) 

 Symmetry: (a, b) (c, d) ⇔ ad = bc ⇔ da = cb ⇔ cb = da 

(c, d) R (a, b) (A1) 

 Transitivity: (a, b) R (c, d) and (c, d) R (e, f) ⇒ ad = bc and cf = ed. 

If c = 0, ad = 0 and ed = 0. Since d ≠ 0, a = 0 and e = 0. (M1) 

⇒ af = be ⇒ (a, b) R (e, f). 

If c ≠ 0, adcf = bced i.e. (af)dc = (be)cd or (af)cd = (be)cd 

i.e. af  = be ⇒ (a, b) R (e, f), since cd ≠ 0 (R1) 4 

Note: Award (M0)(R1) if cd ≠ 0 is not mentioned. 

(b) ad = bc ⇔ a : b = c : d (M1) 

 i.e. the classes are those pairs (a, b) and (c, d) with 
d

c

b

a
=  

 i.e. the elements of those pairs are in the same ratio. 

i.e. the elements are on the same line going through the origin. (R1) 2 
[6] 

16. 

 

 
[11] 

17. (a) ∀ a ∈ , a R a (A1) 

∀ a, b ∈ , a R b ⇒ m divides a – b ⇒ m divides b – a ⇒ b R a (A1) 

∀ a, b, c ∈ , a R b and b R c ⇒ m divides (a – b) and m divides (b – c) 

m divides (a – b) + (b – c) ⇒ m divides (a – c) ⇒ a R c (A1) 

Hence R is an equivalence relation. (C1) 4 

(b) For any reasonable attempt to explain that the equivalence relation  

partitions the set. (C2) 

For either the list of equivalence classes that partition  or an attempt  

to explain that there are m equivalence classes. (C2) 4 
[8] 



       6 

 

18. (a) aRa since a
2
 – a

2
 = 0 ≡ 0(mod5) (A1) 

aRb => bRa since a
2
 – b

2
 = 0(mod5) =>b

2
 – a

2
 ≡ 0(mod5) (A1) 

aRb and bRc => aRc since a
2
 – b

2
 ≡ 0(mod5) and b

2
 – c

2
 ≡ 0(mod5) 

=> a
2
 – c

2
 = a

2
 – b

2
 + b

2
 – c

2
 ≡ 0(mod5) (A2) 

Hence R is an equivalence relation. (AG) 4 

(b) (i) It is the set of all the elements b of Y such that bRa.  

(or equivalent) (C2) 

(ii) {5,10} (A1) 

{1,4,6,9} (A1) 

{2,3,7,8} (A1) 5 
[9] 

19. (a) Reflexive: 7
a
 ≡ 7

a
 (modulo 10) so aRa (A1) 

Symmetric: 7
a
 ≡ 7

b
 (modulo 10) ⇒ 7

b
 ≡ 7

a
 (modulo 10) so aRb ⇒ bRa (A1) 

 Transitive: Let 7
a
 ≡ 7

b
 (modulo 10) and 7

b
 ≡ 7

c
 (modulo 10) (M1) 

Then, 7
a
 = 7

b
 + 10λ and 7

b
 = 7

c
 + 10µ 

so 7
a
 = 7

c
 + 10(λ + µ) so aRb and bRc ⇒ aRc (A1) 4 

(b) We note that 7
0
 = 1, 7

1
 = 7, 7

2
 = 49, 7

3
 = 343, 7

4
 = 2401 

The equivalence classes are therefore 

 0, 4, 8, … (A1) 

 1, 5, 9, … (A1) 

 2, 6, 10, … (A1) 

 3, 7, 11, … (A1) 4 

(c) 7
503

 (modulo 10) ≡ 7
3
 (modulo 10) = 3. (A1) 1 

[9] 

20. We show that S is a reflexive, symmetric and transitive relation on X. 

Since R is at equivalence relation on Y, it is reflexive, symmetric, and 

transitive. 

 For all a in X, reflexivity of R implies h(a) Rh(a). By the definition 

of the relation S on X, a S a for all a in X. Hence, S is reflexive. (R2) 

 Let a S b. Then h(a) R h (b) holds on Y. Since R is symmetric, 

h(b) R h (a) which implies b S a. Since this holds for all a, b in X. 

S is a symmetric relation on X. (R2) 

 Let a S b and b S c for any a, b, c in X. Then h(a) R h(b) and 

h (b) R h (c). 

Since R is a transitive relation, we get h(a) R h (c) (M1) 

By definition of the relation S on X, a S c. Thus S is transitive on X. (R1) 6 
[6] 

21. (a) reflexive:  f R f , since f = I f I 
-1

 , where I  is the identity function. 

       symmetric:          f R g ⇒ f = hogoh
-1

,     where h  is a bijective function 

     ⇒ g = h
-1 

of
-
oh     where h  is a bijective function 

     ⇒ g R f      since h
-1 

  is also bijective function 

       transitive:          f R g and gR k  ⇒ f = h1 ogoh1
-1

  and   g = h2okoh2
-1

   

       ⇒ f = h1 o h2okoh2
-1

oh1
-1

   

       ⇒ f = (h1oh2)oko(h1oh2)
-1

 

       ⇒ f R k     (since h1oh2 is also bijective function) 

 (b) f (x) = 2x. If we consider the bijective function  h(x) = x+1, then h
-1

(x) = x-1 

     We find the related function  

   (hofoh
-1

)(x) = 2(x-1)+1 = 2x-1 

 

 

[12] 



       7 

FUNCTIONS 

 

22. f(n) = f(n′), for any n, n′ in , implies n + 1 = n′ + 1. 

Hence n = n′. Hence f is an injection from  to . (R1) 

 There is no point in the domain of f which is mapped to zero. (M1) 

Hence f is not a surjection. (R1) 3 
[3] 

23. A bijection is both one-to-one and onto, so by considering a sketch of each function 

x x x

Y Y Y

y x=   + 1 y x=   2 3

 
 (A1)(A1)(A1) 

we can see that for  to  only y = x
3
 is one-to-one and onto. (R1) 4 

[4] 

24. (a) If the function is injective, then f (x, y) = f (a, b) must imply  

  that (x, y) = (a, b).    (R1) 

 f(x, y) = f (a, b) ⇔ (2y – x, x + y) = (2b – a, a + b) (M1) 

⇔ 2y – x = 2b – a and x + y = a + b ⇔ 3y = 3b ⇔ y = b, x = a (A1) 

⇔ (x, y) = (a, b) (R1) 

(b) If the function is surjective, then given (u, v) ∈ 
2
, we should be 

able to find (x, y) ∈ 
2
 such that f (x, y) = (u, v). (R1) 

 f (x, y) = (u, v) ⇔ (2y – x, x + y) = (u, v) (M1) 

 ⇔ 2y – x = u and x + y = v ⇔ y = 
3

vu +
, x = 

3

2 uv −
 (R1) 

(c) Since f is injective and surjective, it is bijective. Since every 

bijective function has an inverse, then f has an inverse. (R1)(R1) 

 From the last line of the previous part, replace u by x and v by y: 

 f
–1

(x, y) = 






 +−
3

,
3

2 yxxy
 (A1) 

 Now f
–1

(f (x, y)) = f
–1

 (2y – x, x + y) (M1) 

 = 






 ++−−−+
3

)()2(
,

3

)2()(2 yxxyxyyx
 

 = 







3

3
,

3

3 xx
= (x, y) (R1) 

[12] 

25. (a) (i) f is an increasing function so it is injective. R1 A1   

  (ii) Let f(n) = 1 (or any other appropriate value) M1 

Then 5n + 4 = 1, n = 
5
3  which is not in the domain 

∴ f is not surjective. A1 

  

 (b) g (x, y) = (x + 2y, 3x – 5y)  

   

  (i) Let g(x, y) = g(s, t) so (x + 2y, 3x – 5y) = (s + 2t, 3s – 5t) M1 

x + 2y = s + 2t, 3x – 5y = 3s – 5t M1 

y = t and x = s ⇒ (x, y) = (s, t)         g is injective. A1 
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  (ii) Let (u, v) be an element of the codomain. 

x + 2y = u, 3x – 5y = v M1 

Then –11y = –3u + v so y = 
11

3 vu −  A1 

and 11x = 5u + 2v so x = 
11

25 vu −  A1 

Since 




 −+

11
3,

11
25 vuvu  is in the domain then g is surjective R1. 

 (c) g
–1

(x, y) = 






 −+
11

3
,

11

25 yxyx
 (A2) 13 

 [13] 

26. 

 

THEORY - PROOFS 

27. There is 








0

n
 empty subset. (A1) 

There are 








1

n
 subsets with 1 element. (A1) 

There are 








2

n
 subsets with 2 elements. 

…………. 

There are 








k

n
 subsets with k elements. (A1) 

So in total there are 








0

n
 + 









1

n
 + … + 









n

n
 (M1)(A1) 

 = (1 + 1)
n
 = 2

n
 subsets. (A1)(AG) 

OR 

Since each of the n elements in set X can be either included in the subset or  

not, there are 2
n
 possible subsets. (A6) 

[6] 

28. 29. 30.   Answers can be found in the lecture notes. 


