MATH HL
 OPTION
 REVISION - SOLUTIONS
 SETS, RELATIONS AND GROUPS

Instructor: Christos Nikolaidis

PART A: SETS AND RELATIONS

SETS

1. Venn diagrams are

Note: Award (A1) if both the Venn diagrams are correct otherwise award (AO).

From the Venn diagrams, we see that $B \cap(A-B)=\phi$ and $B \cap(B-A)=B-A$ (M1) Hence they are not equal.
Note: Award (M0)(C1) if no reason is given. Accept other correct diagrams.
2. (a) $(A \cup B)^{\prime}$ is given by

(A1)
$A^{\prime} \cap B^{\prime}$ is given by

Hence $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.
(b) $\quad\left[\left(A^{\prime} \cup B\right) \cap\left(A \cup B^{\prime}\right)\right]^{\prime}=\left(A^{\prime} \cup B\right)^{\prime} \cup\left(A \cup B^{\prime}\right)^{\prime}$

$$
\begin{align*}
& =\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right) \tag{A1}\\
& \left.=\left[\left(A \cap B^{\prime}\right) \cup A^{\prime}\right][(A \cap B) \cup B)\right] \tag{A1}\\
& =\left[\left(A \cup A^{\prime}\right) \cap\left(B^{\prime} \cup A^{\prime}\right] \cap\left[(A \cup B) \cap\left(B^{\prime} \cup B\right)\right]\right. \tag{M1}\\
& =\left(B^{\prime} \cup A^{\prime}\right) \cap(A \cup B) \tag{A1}\\
& =(A \cap B)^{\prime} \cap(A \cup B) \tag{AG}
\end{align*}
$$

3. (a)

The shaded area denotes $A-B$ and $A \cap B^{\prime}$
confirming that $A-B=A \cap B^{\prime}$
(A1)
(AG) 1
(M1)
(A1) 4
4. (a)

(b) $(A \cup B)-(B \cap A)=(A \cup B) \cap(B \cap A)^{\prime}$

$$
\begin{aligned}
& =\left[A \cap(B \cap A)^{\prime}\right] \cup\left[B \cap(B \cap A)^{\prime}\right] \\
& =\left[A \cap\left(B^{\prime} \cup A^{\prime}\right)\right] \cup\left[B \cap\left(B^{\prime} \cup A^{\prime}\right)\right] \\
& =\left(A \cap B^{\prime}\right) \cup\left(A \cap A^{\prime}\right) \cup\left(B \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)=\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right) \\
& =(A-B) \cup(B-A)
\end{aligned}
$$

6. $A \Delta B=(A \backslash B) \cup(B \backslash A)$

$$
\begin{aligned}
& =\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right) \\
= & \left(\left(A \cap B^{\prime}\right) \cup B\right) \cap\left(\left(A \cap B^{\prime}\right) \cup A^{\prime}\right) \\
= & \left((A \cup B) \cap\left(B^{\prime} \cup B\right) \cap\left(\left(A \cup A^{\prime}\right) \cap\left(B^{\prime} \cup A^{\prime}\right)\right)\right. \\
= & ((A \cup B) \cap U) \cap\left(U \cap\left(B^{\prime} \cup A^{\prime}\right)\right. \\
= & (A \cup B) \cap\left(A^{\prime} \cup B^{\prime}\right) \\
= & (A \cup B) \cap(A \cap B)^{\prime}
\end{aligned}
$$

Note: Illustration using a Venn diagram is not a proof.
7. (a)

$$
\begin{equation*}
(三) \tag{M1}
\end{equation*}
$$

(\#)

That is, $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$
(b) From part (a) $\left(A^{\prime} \cap B\right) \cup \mathrm{C}^{\prime}=\left(\mathrm{A}^{\prime} \cup \mathrm{C}^{\prime}\right) \cap\left(\mathrm{B} \cup \mathrm{C}^{\prime}\right)$.

From De Morgan's laws $(A \cap C)^{\prime}=A^{\prime} \cup \mathrm{C}^{\prime}$, and $\left(B^{\prime} \cap \mathrm{C}\right)^{\prime}=B \cup C^{\prime}(\mathrm{A} 1)(\mathrm{A} 1)$
So $\left(A^{\prime} \cap B\right) \cup C^{\prime}=(A \cap C)^{\prime} \cap\left(B^{\prime} \cap C\right)^{\prime}$
8. By definition of \bullet and de Morgan's laws,

$$
\begin{align*}
(X \bullet Y)^{\prime} & =(X \cap Y)^{\prime} \cap\left(X^{\prime} \cap Y^{\prime}\right)^{\prime} \tag{M1}\\
& =\left(X^{\prime} \cup Y^{\prime}\right) \cap(X \cup Y) \tag{M1}\\
& =(X \cup Y) \cap\left(X^{\prime} \cup Y^{\prime}\right) \tag{R1}
\end{align*}
$$

9. (a) $A \# A=A^{\prime} \cup A^{\prime}=A^{\prime}$
(A1)(AG) 1
(b) $(A \# A) \#(B \# B)=A^{\prime} \# B^{\prime}=\left(A^{\prime}\right)^{\prime} \cup\left(B^{\prime}\right)^{\prime}=A \cup B$
(c) $(A \# B) \#(A \# B)=\left(A^{\prime} \cup B^{\prime}\right) \#\left(A^{\prime} \cup B^{\prime}\right)$
$=\left(A^{\prime} \cup B^{\prime}\right)^{\prime}$
$=A \cap B$ (by de Morgan's law)

$$
(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{AG}) \quad 2
$$

(AG) 3
11. (a) $\operatorname{gcd}(a, a)=a>1$, since $a \in S$.

Hence R is reflexive.
(b) Since $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$,
$\operatorname{gcd}(a, b)>1 \Rightarrow \operatorname{gcd}(b, a)>1$
(c) Any correct counter example e.g.
$\operatorname{gcd}(25,15)=5 \Rightarrow 25 R 15$
$\operatorname{gcd}(15,21)=3 \Rightarrow 15 R 21$
$\operatorname{gcd}(25,21)=1 \Rightarrow 25 \operatorname{not} R 21$
Hence R is not transitive
12. (a) R is reflexive because $|z|=|z| \Rightarrow z R z$.
R is symmetric because $\left(\left|z_{1}\right|=\left|z_{2}\right| \Rightarrow\left|z_{2}\right|=\left|z_{1}\right|\right) \Rightarrow\left(z_{1} R z_{2} \Rightarrow z_{2} R z_{1}\right)$
R is transitive because $\left(\left|z_{1}\right|=\left|z_{2}\right|\right.$ and $\left.\left|z_{2}\right|=\left|z_{3}\right| \Rightarrow\left|z_{1}\right|=\left|z_{3}\right|\right)$
$\Rightarrow\left(z_{1} R z_{2}\right.$ and $\left.z_{2} R z_{3} \Rightarrow z_{1} R z_{3}\right)$
(b) In the Argand diagram this corresponds to the concentric circles
centered at the origin.

Hence R is symmetric (AG)
(c) A
(AG)- 3

2

Symmetric: $(a, b) \Delta(c, d) \Rightarrow a^{2}+b^{2}=c^{2}+d^{2} \Leftrightarrow$
$c^{2}+d^{2}=a^{2}+b^{2} \Leftrightarrow(c, d) \Delta(a, b)$
Transitive: $(a, b) \Delta(c, d)$ and $(c, d) \Delta(e, f) \Leftrightarrow$
$a^{2}+b^{2}=c^{2}+d^{2}$ and $c^{2}+d^{2}=e^{2}+f^{2} \Leftrightarrow$
$a^{2}+b^{2}=e^{2}+f^{2} \Leftrightarrow(a, b) \Delta(e, f)$
(b) This is the set of ordered pairs (x, y) such that $x^{2}+y^{2}=5$.

Notes: It is a circle with radius $\sqrt{5}$.
(c) The partition is the set of all concentric circles in the plane with the origin as the centre.
14.
(a) Reflexivity: $\left(x_{1}, y_{1}\right) R\left(x_{1}, y_{1}\right)$ since $x_{1}+y_{1}=x_{1}+y_{1}$

Symmetry: $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \Rightarrow\left(x_{2}, y_{2}\right) R\left(x_{1}, y_{1}\right)$ since $x_{1}+y_{2}=x_{2}+y_{1}$ $\Rightarrow x_{2}+y_{1}=x_{1}+y_{2}$
Transitivity: Suppose that $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) R\left(x_{3}, y_{3}\right)$. Then,
$x_{1}+y_{2}=x_{2}+y_{1}$ and $x_{3}+y_{2}=x_{2}+y_{3}$
Subtracting, $x_{1}-x_{3}=y_{1}-y_{3}$ or $x_{1}+y_{3}=x_{3}+y_{1}$
It follows that $\left(x_{1}, y_{1}\right) R\left(x_{3}, y_{3}\right)$.
(b) $x_{1}+y_{2}=x_{2}+y_{1} \Rightarrow y_{1}-x_{1}=y_{2}-x_{2}$

The equivalence classes are lines with equations $y=x+$ Constant.
(A1)
15. (a) To show that R is an equivalence relation, we show it is reflexive, symmetric, transitive.

Reflexivity: Since $a b=b a$ for $a, b \in \mathbb{Z}$, we have $(a, b) R(a, b)$.
Symmetry: $(a, b)(c, d) \Leftrightarrow a d=b c \Leftrightarrow d a=c b \Leftrightarrow c b=d a$ $(c, d) R(a, b)$

Transitivity: $(a, b) R(c, d)$ and $(c, d) R(e, f) \Rightarrow a d=b c$ and $c f=e d$.
If $c=0, a d=0$ and $e d=0$. Since $d \neq 0, a=0$ and $e=0$.
$\Rightarrow a f=b e \Rightarrow(a, b) R(e, f)$.
If $c \neq 0, a d c f=b c e d$ i.e. $(a f) d c=(b e) c d$ or $(a f) c d=(b e) c d$
i.e. $a f=b e \Rightarrow(a, b) R(e, f)$, since $c d \neq 0$

Note: Award (M0)(R1) if $c d \neq 0$ is not mentioned.
(b) $a d=b c \Leftrightarrow a: b=c: d$
i.e. the classes are those pairs (a, b) and (c, d) with $\frac{a}{b}=\frac{c}{d}$
i.e. the elements of those pairs are in the same ratio.
i.e. the elements are on the same line going through the origin.
16.
(a) $\quad(a, b) R(p, q) \Rightarrow \max (|a|,|b|)=\max (|p|,|q|)$
$\max (|p|,|q|)=\max (|a|,|b|) \Rightarrow(p, q) R(a, b)$
$\Rightarrow R$ is symmetric
$(a, b) R(a, b) \Rightarrow \max (|a|,|b|)=\max (|a|,|b|)$
R is reflexive
$(a, b) R(x, y)$ and $(x, y) R(p, q) \Rightarrow(a, b) R(p, q)$
since $\max (|a|,|b|)=\max (|x|,|y|)$ and $\max (|x|,|y|)=\max (|p|,|q|)($ MI)
$\Rightarrow \max (|a|,|b|)=\max (|p|,|q|)$
R is transitive.
$\Rightarrow R$ is an equivalence relation.
(b) (i) If $\max (|x|,|y|)=c$

Then $|x|=c$ and $|y| \leq c$
$\Rightarrow x= \pm c$ and $-c \leq y \leq c$
(MI)(AI)
or $|y|=c$ and $|x| \leq c$
$\Rightarrow y= \pm c$ and $-c \leq x \leq c$
(ii) i.e. Concentric squares with a centre at $(0,0)$
17. (a) $\forall a \in \mathbb{Z}, a R a$
$\forall a, b \in \mathbb{Z}, a R b \Rightarrow m$ divides $a-b \Rightarrow m$ divides $b-a \Rightarrow b R a$
$\forall a, b, c \in \mathbb{Z}, a R b$ and $b R c \Rightarrow m$ divides $(a-b)$ and m divides $(b-c)$ m divides $(a-b)+(b-c) \Rightarrow m$ divides $(a-c) \Rightarrow a R c$
Hence R is an equivalence relation.
(b) For any reasonable attempt to explain that the equivalence relation partitions the set.
For either the list of equivalence classes that partition \mathbb{Z} or an attempt to explain that there are m equivalence classes.
18. (a) $a R a$ since $a^{2}-a^{2}=0 \equiv 0(\bmod 5)$
$a R b=>b R a$ since $a^{2}-b^{2}=0(\bmod 5)=>b^{2}-a^{2} \equiv 0(\bmod 5)$
$a R b$ and $b R c \Rightarrow a R c$ since $a^{2}-b^{2} \equiv 0(\bmod 5)$ and $b^{2}-c^{2} \equiv 0(\bmod 5)$
$\Rightarrow a^{2}-c^{2}=a^{2}-b^{2}+b^{2}-c^{2} \equiv 0(\bmod 5)$
Hence R is an equivalence relation.
(b) (i) It is the set of all the elements b of Y such that $b R a$. (or equivalent)
(ii) $\{5,10\}$
(A1)
$\{1,4,6,9\}$
(A1)
$\{2,3,7,8\}$
(A1) 5
19. (a) Reflexive: $7^{a} \equiv 7^{a}$ (modulo 10) so $a R a$

Symmetric: $7^{a} \equiv 7^{b}$ (modulo 10) $\Rightarrow 7^{b} \equiv 7^{a}$ (modulo 10) so $a R b \Rightarrow b R a$ (A1)
Transitive: Let $7^{a} \equiv 7^{b}$ (modulo 10) and $7^{b} \equiv 7^{c}$ (modulo 10)
Then, $7^{a}=7^{b}+10 \lambda$ and $7^{b}=7^{c}+10 \mu$
so $7^{a}=7^{c}+10(\lambda+\mu)$ so $a R b$ and $b R c \Rightarrow a R c$
(b) We note that $7^{0}=1,7^{1}=7,7^{2}=49,7^{3}=343,7^{4}=2401$

The equivalence classes are therefore

$$
\begin{align*}
& 0,4,8, \ldots \tag{A1}\\
& 1,5,9, \ldots \tag{A1}\\
& 2,6,10, \ldots \tag{A1}\\
& 3,7,11, \ldots \tag{A1}
\end{align*}
$$

(c) $7^{503}($ modulo 10$) \equiv 7^{3}($ modulo 10$)=3$.
20. We show that S is a reflexive, symmetric and transitive relation on X.

Since R is at equivalence relation on Y, it is reflexive, symmetric, and transitive.
For all a in X, reflexivity of R implies $h(a) R h(a)$. By the definition of the relation S on $X, a S a$ for all a in X. Hence, S is reflexive.
Let $a S b$. Then $h(a) R h(b)$ holds on Y. Since R is symmetric,
$h(b) R h(a)$ which implies $b S a$. Since this holds for all a, b in X.
S is a symmetric relation on X.
Let $a S b$ and $b S c$ for any a, b, c in X. Then $h(a) R h(b)$ and $h(b) R h(c)$.
Since R is a transitive relation, we get $h(a) R h(c)$
By definition of the relation S on $X, a S c$. Thus S is transitive on X.
21. (a) reflexive: $f R f$, since $f=I f I^{-1}$, where I is the identity function.
symmetric: $\quad f R g \Rightarrow f=h_{o} g_{o h^{-1}}, \quad$ where h is a bijective function

$$
\begin{array}{ll}
\Rightarrow g=h^{-1} \text { of oh } & \text { where } h \text { is a bijective function } \\
\Rightarrow g R f & \text { since } h^{-1} \text { is also bijective function }
\end{array}
$$

transitive: $\quad f R g$ and $g R k \Rightarrow f=h_{1} \circ g_{o h} h_{1}^{-1}$ and $g=h_{2} o k o h_{2}^{-1}$
$\Rightarrow f=h_{1} \circ h_{20}$ oko ${ }_{2}^{-1} o h_{1}^{-I}$
$\Rightarrow f=\left(h_{1} o h_{2}\right) o k o\left(h_{1} o h_{2}\right)^{-1}$
$\Rightarrow f R k \quad$ (since $h_{l o h_{2}}$ is also bijective function)
(b) $f(x)=2 x$. If we consider the bijective function $h(x)=x+1$, then $h^{-1}(x)=x-1$

We find the related function

$$
\left(h_{o f} h^{-1}\right)(x)=2(x-1)+1=2 x-1
$$

FUNCTIONS

22. $f(n)=f\left(n^{\prime}\right)$, for any n, n^{\prime} in \mathbb{N}, implies $n+1=n^{\prime}+1$.

Hence $n=n^{\prime}$. Hence f is an injection from \mathbb{N} to \mathbb{N}.
There is no point in the domain of f which is mapped to zero.
Hence f is not a surjection.
(R1) 3
23. A bijection is both one-to-one and onto, so by considering a sketch of each function

(A1)(A1)(A1)
we can see that for \mathbb{R} to \mathbb{R} only $y=x^{3}$ is one-to-one and onto.
24. (a) If the function is injective, then $f(x, y)=f(a, b)$ must imply
that $(x, y)=(a, b)$.

$$
\begin{align*}
& f(x, y)=f(a, b) \Leftrightarrow(2 y-x, x+y)=(2 b-a, a+b) \tag{M1}\\
& \Leftrightarrow 2 y-x=2 b-a \text { and } x+y=a+b \Leftrightarrow 3 y=3 b \Leftrightarrow y=b, x=a \tag{A1}\\
& \Leftrightarrow(x, y)=(a, b)
\end{align*}
$$

(b) If the function is surjective, then given $(u, v) \in \mathbb{R}^{2}$, we should be
able to find $(x, y) \in \mathbb{R}^{2}$ such that $f(x, y)=(u, v)$.
$f(x, y)=(u, v) \Leftrightarrow(2 y-x, x+y)=(u, v)$
$\Leftrightarrow 2 y-x=u$ and $x+y=v \Leftrightarrow y=\frac{u+v}{3}, x=\frac{2 v-u}{3}$
(c) Since f is injective and surjective, it is bijective. Since every bijective function has an inverse, then f has an inverse.

From the last line of the previous part, replace u by x and v by y :

$$
\begin{align*}
& f^{-1}(x, y)=\left(\frac{2 y-x}{3}, \frac{x+y}{3}\right) \tag{A1}\\
& \text { Now } \begin{aligned}
f^{-1}(f(x, y))= & f^{-1}(2 y-x, x+y) \\
& =\left(\frac{2(x+y)-(2 y-x)}{3}, \frac{(2 y-x)+(x+y)}{3}\right) \\
& =\left(\frac{3 x}{3}, \frac{3 x}{3}\right)=(x, y)
\end{aligned} \tag{M1}
\end{align*}
$$

25. (a) (i) f is an increasing function so it is injective.
(ii) Let $f(n)=1$ (or any other appropriate value)

Then $5 n+4=1, n=\frac{3}{5}$ which is not in the domain
$\therefore f$ is not surjective.
(b) $\quad g(x, y)=(x+2 y, 3 x-5 y)$

> (i) Let $g(x, y)=g(s, t)$ so $(x+2 y, 3 x-5 y)=(s+2 t, 3 s-5 t)$
> $x+2 y=s+2 t, 3 x-5 y=3 s-5 t$
> $y=t$ and $x=s \Rightarrow(x, y)=(\mathrm{s}, t) \quad g$ is injective.
(ii) Let (u, v) be an element of the codomain.
$x+2 y=u, 3 x-5 y=v \quad$ M1
Then $-11 y=-3 u+v$ so $y=\frac{3 u-v}{11} \quad$ A1
and $11 x=5 u+2 v$ so $x=\frac{5 u-2 v}{11} \quad$ A1
Since $\left(\frac{5 u+2 v}{11}, \frac{3 u-v}{11}\right)$ is in the domain then g is surjective R1.
(c) $g^{-1}(x, y)=\left(\frac{5 x+2 y}{11}, \frac{3 x-y}{11}\right) \quad$ (A2)
[13]
26.
(a) We need to show that f is surjective and injective.

It is surjective, all elements of S are images.
It is injective, $1: 1$ function.
So f is a bijection.
(b) EITHER

$$
\begin{equation*}
f \circ f(1)=4, f \circ f(2)=3, f \circ f(3)=2, f \circ f(4)=1 \tag{AI}
\end{equation*}
$$

Therefore, reversing,

$$
(f \circ f)^{-1}(4)=1,(f \circ f)^{-1}(3)=2,(f \circ f)^{-1}(2)=3,(f \circ f)^{-1}(1)=4 .
$$

So, $(f \circ f)^{-1}(x)=(f \circ f)(x)$ for all $x \in S$
OR
$\left.\begin{array}{rl}(f \circ f) x=4 x(\text { modulo } 5) \\ \text { So, }(f \circ f) \circ(f \circ f)(x) & =16 x \text { (modulo 5) } \\ & =x \text { (modulo 5) }\end{array}\right\}$

THEORY - PROOFS

27. There is $\binom{n}{0}$ empty subset.

There are $\binom{n}{1}$ subsets with 1 element.
There are $\binom{n}{2}$ subsets with 2 elements.
There are $\binom{n}{k}$ subsets with k elements.
So in total there are $\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}$

$$
\begin{equation*}
=(1+1)^{n}=2^{n} \text { subsets. } \tag{M1}
\end{equation*}
$$

OR

Since each of the n elements in set X can be either included in the subset or not, there are 2^{n} possible subsets.
28. 29. 30. Answers can be found in the lecture notes.

