MATH HL

OPTION - REVISION

SETS, RELATIONS AND GROUPS

Compiled by: Christos Nikolaidis

PART A: SETS AND RELATIONS

SETS

1. Let A and B be two non-empty sets, and $A-B$ be the set of all elements of A which are not in B .

Draw Venn diagrams for $A-B$ and $B-A$ and determine if $B \cap(A-B)=B \cap(B-A)$.
(Total 3 marks)
2. (a) Use a Venn diagram to show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.
(b) Prove that $\left[\left(A^{\prime} \cup B\right) \cap\left(A \cup B^{\prime}\right)\right]^{\prime}=(A \cap B)^{\prime} \cap(A \cup B)$.
(Total 6 marks)
3. The difference, $A-B$, of two sets A and B is defined as the set of all elements of A which do not belong to B.
(a) Show by means of a Venn diagram that $A-B=A \cap B^{\prime}$.
(b) Using set algebra, prove that $A-(B \cup C)=(A-B) \cap(A-C)$.
(Total 5 marks)
4. $\quad A-B$ is the set of all elements that belong to A but not to B.
(a) Use Venn diagrams to verify that $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$.
(b) Use De Morgan's laws to prove that $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$.
(Total 6 marks)
5. Use Venn diagrams to show that
(a) $A \cup\left(B \cap A^{\prime}\right)^{\prime}=A \cup B^{\prime}$
(b) $\left((A \cap B)^{\prime} \cup B\right)^{\prime}=\varnothing$.
(Total 4 marks)
6. Using de Morgan's laws, prove that $A \Delta B=(A \cup B) \cap(A \cap B)^{\prime}$.
(Total 6 marks)
7. Let A, B and C be subsets of a given universal set.
(a) Use a Venn diagram to show that $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$.
(b) Hence, and by using De Morgan's laws, show that

$$
\begin{equation*}
\left(A^{\prime} \cap B\right) \cup C^{\prime}=(A \cap C)^{\prime} \cap\left(B^{\prime} \cap C\right)^{\prime} . \tag{2}
\end{equation*}
$$

(Total 5 marks)
8. Let X and Y be two non-empty sets. Define the operation $X \bullet Y$ by $X \bullet Y=(X \cap Y) \cup\left(X^{\prime} \cap Y^{\prime}\right)$.

Prove that $(X \bullet Y)^{\prime}=(X \cup Y) \cap\left(X^{\prime} \cup Y\right)$.
(Total 3 marks)
9. Define the operation \# on the sets A and B by $A \# B=A^{\prime} \cup B^{\prime}$. Show algebraically that
(a) $A \# A=A^{\prime}$;
(b) $(A \# A) \#(B \# \mathrm{~B})=A \cup B ;$
(c) $(A \# B) \#(A \# B)=A \cap B$.
(Total 6 marks)

RELATIONS

10. Let $A=\{a, b, c, d, e, f\}$, and R be a relation on A defined by the matrix below.

$$
\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(Note that a ' 1 ' in the matrix signifies that the element in the corresponding row is related to the element in the corresponding column, for example $d R b$ because there is a ' 1 ' on the intersection of the d-row and the b-column).
(a) Assuming that R is transitive, verify that R is an equivalence relation.
(b) Give the partition of A corresponding to R.
(Total 7 marks)
11. Let $S=\{$ integers greater than 1$\}$. The relation R is defined on S by

$$
m R n \Leftrightarrow \operatorname{gcd}(m, n)>1, \text { for } m, n \in S
$$

(a) Show that R is reflexive.
(b) Show that R is symmetric.
(c) Show using a counter example that R is not transitive.
12. The relation R on \mathbb{C} is defined as follows

$$
\begin{equation*}
\mathrm{z}_{1} R z_{2} \Leftrightarrow\left|z_{1}\right|=\left|z_{2}\right| \text { for } z_{1}, z_{2} \in \mathbb{C} \tag{3}
\end{equation*}
$$

(a) Show that R is an equivalence relation on \mathbb{C}.
(b) Describe the equivalence classes under the relation R.
(Total 5 marks)
13. Let $S=\{(x, y) \mid x, y \in \mathbb{R}\}$, and let $(a, b),(c, d) \in S$. Define the relation Δ on S as follows:

$$
(a, b) \Delta(c, d) \Leftrightarrow a^{2}+b^{2}=c^{2}+d^{2}
$$

(a) Show that Δ is an equivalence relation.
(b) Find all ordered pairs (x, y) where $(x, y) \Delta(1,2)$.
(c) Describe the partition created by this relation on the (x, y) plane.
14. The relation R is defined on the points $\mathrm{P}(x, y)$ in the plane by

$$
\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \text { if and only if } x_{1}+y_{2}=x_{2}+y_{1}
$$

(a) Show that R is an equivalence relation.
(b) Give a geometric description on the equivalence classes.
(Total 7 marks)
15. Consider the set $\mathbb{Z} \times \mathbb{Z}^{+}$. Let R be the relation defined by the following:

$$
\text { for }(a, b) \text { and }(c, d) \text { in } \mathbb{Z} \times \mathbb{Z}^{+} \quad(a, b) R(c, d) \text { if and only if } a d=b c
$$

where $a b$ is the product of the two numbers a and b.
(a) Prove that R is an equivalence relation on $\mathbb{Z} \times \mathbb{Z}^{+}$.
(b) Show how R partitions $\mathbb{Z} \times \mathbb{Z}^{+}$, and describe the equivalence classes.
16. Let $\max (|x|,|y|)$ be equal to the largest of $|x|$ and $|y|$. Define the relation R on the $x y$ plane by

$$
(a, b) R(p, q) \Leftrightarrow \max (|a|,|b|)=\max (|p|,|q|)
$$

(a) Show that the relation R is an equivalence relation.
(b) (i) Find the equivalence classes.
(ii) Hence describe the equivalence classes.
(Total 11 marks)
17. Let R be a relation on \mathbb{Z} such that for $m \in \mathbb{Z}^{+}, x R y$ if and only if m divides $x-y$, where
$x, y \in \mathbb{Z}$.
(a) Prove that R is an equivalence relation on \mathbb{Z}.
(b) Prove that this equivalence relation partitions \mathbb{Z} into m distinct classes.
(Total 8 marks)
18. Let Y be the set $\{1,2,3,4,5,6,7,8,9,10\}$.

Define the relation R on Y by $a R b<=>a^{2}-b^{2} \equiv 0(\bmod 5)$, where $a, b \in Y$.
(a) Show that R is an equivalence relation.
(b) (i) What is meant by "the equivalence class containing a "?
(ii) Write down all the equivalence classes.
(Total 9 marks)
19. The relation R is defined on the non-negative integers a, b such that
$a R b \quad$ if and only if $\quad 7^{a} \equiv 7^{b}$ (modulo 10).
(a) Show that R is an equivalence relation.
(b) By considering powers of 7 , identify the equivalence classes.
(c) Find the value of 7^{503} (modulo 10).
(Total 9 marks)
20. Let X and Y be two non-empty sets and $h: \mathrm{X} \rightarrow Y$,

Let also R be an equivalence relation on Y.
$y_{1} R y_{2}$ denotes that two elements y_{1} and y_{2} of Y are related.
Define a relation S on X by the following:

$$
\text { For all } a, b \in X, a S b \text { if and only if } h(a) R h(b) .
$$

Determine if S is an equivalence relation on X.
(Total 6 marks)

Notice: the following is not a past paper question; however, it is a modification of a similar past paper question on matrices (here we use bijective functions instead of matrices)
21. Let R be a relation defined on bijective functions from \mathbb{R} to \mathbb{R}, given the functions f and g, $f R g$ if and only if there exists a bijective function h such that $f=h_{o} g_{o} h^{-1}$
(a) Show that R is an equivalence relation.
(b) Find a bijective function related to the function $f(x)=2 x$

FUNCTIONS

22. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f(n)=n+1$, for all $n \in \mathbb{N}$.

Determine if f is an injection, a surjection, or a bijection. Give reasons for your answer.
23. Determine with reasons which of the following functions is a bijection from \mathbb{R} to \mathbb{R}.

$$
p(x)=x^{2}+1, \quad q(x)=x^{3}, \quad r(x)=\frac{x^{2}+1}{x^{2}+2}
$$

(Total 4 marks)
24. Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $f(x, y)=(2 y-x, x+y)$
(a) Show that f is injective.
(b) Show that f is surjective.
(c) Show that f has an inverse function. Find this inverse and verify your result.
25. Consider the functions f and g, defined by

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow \mathbb{Z} \text { where } f(n)=5 n+4 \\
& g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \text { where } g(x, y)=(x+2 y, 3 x-5 y)
\end{aligned}
$$

(a) Explain whether the function f is
(i) injective;
(ii) surjective.
(b) Explain whether the function g is (i) injective;
(ii) surjective.
(c) Find the inverse of g.
(Total 13 marks)
26. Let $S=\{1,2,3,4\}$ and f be a function, with domain and range S, defined by

$$
\begin{equation*}
f(x)=2 x(\operatorname{modulo} 5) \tag{3}
\end{equation*}
$$

(a) Prove the f is a bijection.
(b) Show that the composite function $f \circ f$ is its own inverse.

THEORY - PROOFS

27. Let X be a set containing n elements (where n is a positive integer).

Show that the set of all subsets of X contains 2^{n} elements.
28. Consider any functions $f: A \rightarrow B$ and $g: B \rightarrow C$. Show that
(a) if both f and g are injective then $g \circ f$ is also injective.
(b) if both f and g are surjective then $g \circ f$ is also surjective.
(c) if both f and g are bijective then $g \circ f$ is also bijective.
29. Consider any functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Given that is $g \circ f$ injective, show that f is injective.
(b) Given that is $g \circ f$ surjective, show that g is surjective.
(c) Given that is $g \circ f$ bijective, write down the conclusion for f and g.
30. Give the definitions of the following terms:

Difference: $A-B$	Relation from A to B	Equivalence class of $a:[a]$	Injection
Symmetric difference: $A \Delta B$	Relation on A	Partition of A	Surjection Bijection
Cartesian Product $A \times B$	Equivalence relation		

Give examples.

