

MATH HL

OPTION - REVISION

SETS, RELATIONS AND GROUPS

Compiled by: Christos Nikolaidis

PART A: SETS AND RELATIONS

SETS

1. Let A and B be two non-empty sets, and A - B be the set of all elements of A which are not in B. Draw Venn diagrams for A - B and B - A and determine if $B \cap (A - B) = B \cap (B - A)$.

(Total 3 marks)

- 2. (a) Use a Venn diagram to show that $(A \cup B)' = A' \cap B'$.
- (4)

(2)

(b) Prove that $[(A' \cup B) \cap (A \cup B')]' = (A \cap B)' \cap (A \cup B)$.

(Total 6 marks)

- 3. The difference, A B, of two sets A and B is defined as the set of all elements of A which do not belong to B.
 - (a) Show by means of a Venn diagram that $A B = A \cap B'$.

(1) (4)

(b) Using set algebra, prove that $A - (B \cup C) = (A - B) \cap (A - C)$.

(Total 5 marks)

- **4.** A-B is the set of all elements that belong to A but not to B.
 - (a) Use Venn diagrams to verify that $(A B) \cup (B A) = (A \cup B) (A \cap B)$.
- (2)

(4)

- (b) Use De Morgan's laws to prove that $(A B) \cup (B A) = (A \cup B) (A \cap B)$.
- (Total 6 marks)

- 5. Use Venn diagrams to show that
 - (a) $A \cup (B \cap A')' = A \cup B'$
- (b) $((A \cap B)' \cup B)' = \emptyset$.

(Total 4 marks)

6. Using de Morgan's laws, prove that $A \Delta B = (A \cup B) \cap (A \cap B)'$.

(Total 6 marks)

- 7. Let A, B and C be subsets of a given universal set.
 - (a) Use a Venn diagram to show that $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

(2)

(b) Hence, and by using De Morgan's laws, show that

$$(A' \cap B) \cup C' = (A \cap C)' \cap (B' \cap C)'.$$

(3) (Total 5 marks)

8. Let *X* and *Y* be two non-empty sets. Define the operation $X \bullet Y$ by $X \bullet Y = (X \cap Y) \cup (X' \cap Y')$. Prove that $(X \bullet Y)' = (X \cup Y) \cap (X' \cup Y')$.

(Total 3 marks)

- **9.** Define the operation # on the sets A and B by $A \# B = A' \cup B'$. Show algebraically that
 - (a) A#A = A';
- (b) $(A#A)#(B#B) = A \cup B$;
- (c) $(A#B)#(A#B) = A \cap B$.

(Total 6 marks)

RELATIONS

10. Let $A = \{a, b, c, d, e, f\}$, and R be a relation on A defined by the matrix below.

(1	0	1	0	1	0)
0	1	0	1	0	0 0 0 0 0 0
1	0	1	0	1	0
0	1	0	1	0	0
1	0	1	0	1	0
0	0	0	0	0	1)

(Note that a '1' in the matrix signifies that the element in the corresponding row is related to the element in the corresponding column, for example dRb because there is a '1' on the intersection of the d-row and the b-column).

- (a) Assuming that R is transitive, verify that R is an equivalence relation. (3)
- (b) Give the partition of A corresponding to R.

(Total 7 marks)

(4)

(3)

11. Let $S = \{\text{integers greater than 1}\}$. The relation R is defined on S by

$$m R n \Leftrightarrow \gcd(m, n) > 1$$
, for $m, n \in S$.

- (a) Show that R is reflexive. (1)
- (b) Show that R is symmetric. (2)
- (c) Show using a counter example that R is not transitive. (3)

(Total 6 marks)

12. The relation R on \mathbb{C} is defined as follows

$$z_1 R z_2 \Leftrightarrow |z_1| = |z_2| \text{ for } z_1, z_2 \in \mathbb{C}.$$

- (a) Show that R is an equivalence relation on \mathbb{C} .
- (b) Describe the equivalence classes under the relation R. (2)

(Total 5 marks)

13. Let $S = \{(x, y) \mid x, y \in \mathbb{R}\}$, and let $(a, b), (c, d) \in S$. Define the relation Δ on S as follows:

$$(a, b) \Delta (c, d) \Leftrightarrow a^2 + b^2 = c^2 + d^2$$

- (a) Show that Δ is an equivalence relation. (4)
- (b) Find all ordered pairs (x, y) where $(x, y) \Delta (1, 2)$.
- (c) Describe the partition created by this relation on the (x, y) plane. (1) (Total 7 marks)
- **14.** The relation R is defined on the points P(x, y) in the plane by

$$(x_1, y_1)R(x_2, y_2)$$
 if and only if $x_1 + y_2 = x_2 + y_1$.

- (a) Show that R is an equivalence relation. (4)
- (b) Give a geometric description on the equivalence classes. (2) (Total 7 marks)
- 15. Consider the set $\mathbb{Z} \times \mathbb{Z}^+$. Let R be the relation defined by the following:

for
$$(a, b)$$
 and (c, d) in $\mathbb{Z} \times \mathbb{Z}^+$ $(a, b) R(c, d)$ if and only if $ad = bc$,

where ab is the product of the two numbers a and b.

- (a) Prove that R is an equivalence relation on $\mathbb{Z} \times \mathbb{Z}^+$. (4)
- (b) Show how R partitions $\mathbb{Z} \times \mathbb{Z}^+$, and describe the equivalence classes. (2)

(Total 6 marks)

16.	Let $\max(x , y)$ be equal to the largest of $ x $ and $ y $. Define the relation R or	n the <i>xy</i> plane by			
	$(a,b)R(p,q) \Leftrightarrow \max(a , b) = \max(p , q)$				
	 (a) Show that the relation R is an equivalence relation. (b) (i) Find the equivalence classes. 	(6)			
	(ii) Hence describe the equivalence classes.	(5) (Total 11 marks)			
17.	Let <i>R</i> be a relation on \mathbb{Z} such that for $m \in \mathbb{Z}^+$, $x R y$ if and only if m divides $x - x, y \in \mathbb{Z}$.	- y, where			
	(a) Prove that R is an equivalence relation on \mathbb{Z} . (b) Prove that this equivalence relation partitions \mathbb{Z} into m distinct classes.	(4) (4) (Total 8 marks)			
18.	Let <i>Y</i> be the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Define the relation <i>R</i> on <i>Y</i> by $aRb \le a^2 - b^2 \equiv 0 \pmod{5}$, where $a, b \in Y$.				
	(a) Show that <i>R</i> is an equivalence relation.	(4)			
	(b) (i) What is meant by "the equivalence class containing a"?(ii) Write down all the equivalence classes.	(5) (Total 9 marks)			
19.	The relation <i>R</i> is defined on the non-negative integers <i>a</i> , <i>b</i> such that aRb if and only if $7^a \equiv 7^b$ (modulo 10).				
	 (a) Show that R is an equivalence relation. (b) By considering powers of 7, identify the equivalence classes. (c) Find the value of 7⁵⁰³ (modulo 10). 	(4) (4) (1) (Total 9 marks)			
20.	Let X and Y be two non-empty sets and $h: X \to Y$, Let also R be an equivalence relation on Y .				
	y_1Ry_2 denotes that two elements y_1 and y_2 of Y are related.				
	Define a relation S on X by the following:				

For all $a,b \in X$, a S b if and only if h(a) R h(b).

Determine if S is an equivalence relation on X.

(Total 6 marks)

Notice: the following is not a past paper question; however, it is a modification of a similar past paper question on matrices (here we use bijective functions instead of matrices)

- 21. Let R be a relation defined on bijective functions from \mathbb{R} to \mathbb{R} , given the functions f and g, fRg if and only if there exists a bijective function h such that $f = hogoh^{-1}$
 - (a) Show that *R* is an equivalence relation.
 - (b) Find a bijective function related to the function f(x) = 2x

FUNCTIONS

22. Let $f: \mathbb{N} \to \mathbb{N}$ be defined by f(n) = n + 1, for all $n \in \mathbb{N}$. Determine if f is an injection, a surjection, or a bijection. Give reasons for your answer.

(3)

23. Determine with reasons which of the following functions is a bijection from \mathbb{R} to \mathbb{R} .

$$p(x) = x^2 + 1,$$
 $q(x) = x^3,$ $r(x) = \frac{x^2 + 1}{x^2 + 2}$

(Total 4 marks)

- **24.** Define the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f(x, y) = (2y x, x + y)
 - (a) Show that f is injective.

(4)

(b) Show that f is surjective.

(3) (5)

(c) Show that f has an inverse function. Find this inverse and verify your result.

(Total 12 marks)

25. Consider the functions f and g, defined by

$$f: \mathbb{Z} \to \mathbb{Z}$$
 where $f(n) = 5n + 4$,

$$g: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$$
 where $g(x, y) = (x + 2y, 3x - 5y)$

- (a) Explain whether the function f is (i) injective; (ii) surjective.
- (b) Explain whether the function g is (i) injective; (ii) surjective.
- (c) Find the inverse of g.

(Total 13 marks)

26. Let $S = \{1,2,3,4\}$ and f be a function, with domain and range S, defined by

$$f(x) = 2x \pmod{5}$$
.

(a) Prove the f is a bijection.

(3)

(3)

(b) Show that the composite function $f \circ f$ is its own inverse.

(Total 6 marks)

THEORY - PROOFS

- 27. Let X be a set containing n elements (where n is a positive integer). Show that the set of all subsets of X contains 2^n elements.
- **28.** Consider any functions $f: A \to B$ and $g: B \to C$. Show that
 - (a) if both f and g are injective then $g \circ f$ is also injective.
 - (b) if both f and g are surjective then $g \circ f$ is also surjective.
 - (c) if both f and g are bijective then $g \circ f$ is also bijective.
- **29.** Consider any functions $f: A \to B$ and $g: B \to C$.
 - (a) Given that is $g \circ f$ injective, show that f is injective.
 - (b) Given that is $g \circ f$ surjective, show that g is surjective.
 - (c) Given that is $g \circ f$ bijective, write down the conclusion for f and g.
- **30.** Give the definitions of the following terms:

Difference: $A - B$	Relation from A to B	Equivalence class of a: [a]	Injection
Symmetric difference: $A \Delta B$	Relation on A	Partition of A	Surjection
Cartesian Product $A \times B$	Equivalence relation		Bijection

Give examples.