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INSTRUCTIONS TO CANDIDATES
· Do not open this examination paper until instructed to do so.
· Answer all questions.
· Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
· A graphic display calculator is required for this paper.

· A clean copy of the Mathematics HL and Further Mathematics HL formula booklet is required for this paper.
· The maximum mark for this examination paper is [150 marks].
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Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this shown by written working. You are therefore advised to show all working.

1. 
[Maximum mark: 10]

Consider the following graph
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(a) Show that this graph has 

(i)  an Eulerian circuit;

(ii) a Hamiltonian cycle.
[3]

(b) The edge joining V2 and V6  is removed. Does the graph still have an Eulerian circuit and a Hamiltonian cycle? Give reasons for your answers.
[3]

(c) Replace the edge joining V2 and V6 , and remove the edge joining V1 and V2.  
(i)  Find an Eulerian trail.

(ii) Find a Hamiltonian path.
[4]

2.
[Maximum mark: 10]


The square matrix X is such that X 3= O. (i.e. the zero matrix). Show that 
(a) detX = 0
[1]

(b) the inverse of the matrix (I – X)  is  (I + X + X 2). 
[2]
(c) (I – X)n =  I – nX + 
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3.
[Maximum mark: 6]


The permutation P is given by
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(a) Determine the order of P, justifying your answer
[2]

(b) The permutation group G is generated by P. Determine the element of G that is of order 2, giving your answer in cycle notation.
[4]
4. 
[Maximum mark: 8]
Determine, with reasons, whether the following functions are injective or surjective.

(a)        
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(b)        
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(c)        
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5.
[Maximum mark: 9]

(a) Prove that there are infinitely many prime numbers.
[5]


(b) Explain why 24!+17 is not a prime number.
[1]



(c) Find 80 consecutive composite (non-prime) numbers. 
[3]
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6. 
[Maximum mark: 16]
Let M be the set of all matrices of the form 
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(a) Show that (M,+) is not a group.
[1]
(b) Show that M form an abelian group under matrix multiplication.
(you may assume that matrix multiplication is associative)
[5]
(c) Show that f : (M, ∙ ) → (Z,+) given by 
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is an isomorphism.
[4]
(d) Write down the kernel of  f.
[1]
Let K be the set of all matrices of the form 
[image: image15.wmf]÷

÷

ø

ö

ç

ç

è

æ

1

0

3

1

k

 where 
[image: image16.wmf]Z

k

Î

.

(e) Show that  (K, ∙ ) is a subgroup of  (M, ∙ )
[3]
(f) Write down the (left) cosets of K.
[2]
7.
[Maximum mark: 7]

Diagonalize the matrix A =
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; hence find an expression for An.
[7]
8. 
[Maximum mark: 9]

(a) Solve 
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(b) Hence, solve the system 
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9. 
[Maximum mark: 8]

Let S be a relation on N(N, where N ={0,1,2,…} is the set of natural numbers, such that 
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(a) Find all pairs related to (1,2) 
[2]
(b) Show that S is an equivalence relation. 
[4]
(c) Describe the equivalence classes (i.e. the partition of Z(Z) 
[2]
10. 
[Maximum mark: 10]

In the vector space 
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(a) Prove that the vectors 
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[4]
(b) Prove that three vectors 
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 can be expressed uniquely as a linear combination of them.
[6]
11. 
[Maximum mark: 8]

(a) Represent the cube as a planar graph and verify Euler’s relation v – e + f = 2
[2]
(b) For a simple connected bipartite graph explain why 4f ≤ 2e and deduce the 
 inequality e ≤ 2v – 4.
[4]
(c) Explain why the equality e = 2v – 4 holds for the cube in question (a); draw one more example where the equality holds.
[2]
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12.
[Maximum mark: 8]

Consider the matrix
M=
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(a) Explain how it can be seen immediately that the column vectors of  M are linearly dependent.
[2]
(b) Determine the null space of M.
[3]
(c) Explain briefly how your results verify the rank-nullity theorem.
[3]
13. 
[Maximum mark: 8]

Consider the weighted graph
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Use Dijkstra’s Algorithm to find the length of the shortest path between the vertices P and T. Show all the steps used by the algorithm and write down the shortest path.

14.
[Maximum mark: 13]


Solve the following difference equations

(a) 
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[4]

(b) 
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[5]
(c) 
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[4]
15. 
[Maximum mark: 20]

Consider the set G of the differentiable functions 
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for all x(R.
(a) Show that the function
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(b) Given that 
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 is another function in G, show that 
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[4]
(c) Show the sum of those two functions, i.e. 
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It is given that G consists exactly of all linear combinations of 
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(d) Show that G is an abelian group under the addition of functions
[4]

(e) Let 
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be a function in G. 

(i) If a and b are coprime integers show that
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(ii) Find a and b given that f  has a stationary point at A(0,1).
[5]

(f) Explain why the group (G,+) is isomorphic to the additive group (R2,+)
(where R2  is the standard 2-dimensional vector space).
[2]
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